29 research outputs found

    Optimal energy efficiency link adaptation in IEEE 802.15.6 IR-UWB body area networks

    Full text link
    © 2014 IEEE. We propose a novel link adaptation mechanism to maximize energy efficiency in IEEE 802.15.6 impulse radio ultra wideband (IR-UWB) wireless body area networks (WBANs). We consider noncoherent energy detection and autocorrelation receivers, suitable for low complexity implementations. The amount of captured energy is first modeled for the on-body WBAN channel. Using our energy capture model and Gaussian approximations for the decision statistic, the error performance of various physical layer modes of the IEEE 802.15.6 standard is derived assuming intra-symbol interference. We refer to the IEEE 802.15.6 specification as a use case. The proposed adaptation scheme can be applied to any other IR-UWB system with noncoherent receivers and is based on the estimated signal to noise ratio and the channel's energy capture index for which we propose unbiased estimators

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    Particle Swarm Optimization for Interference Mitigation of Wireless Body Area Network: A Systematic Review

    Get PDF
    Wireless body area networks (WBAN) has now become an important technology in supporting services in the health sector and several other fields. Various surveys and research have been carried out massively on the use of swarm intelligent (SI) algorithms in various fields in the last ten years, but the use of SI in wireless body area networks (WBAN) in the last five years has not seen any significant progress. The aim of this research is to clarify and convince as well as to propose a answer to this problem, we have identified opportunities and topic trends using the particle swarm optimization (PSO) procedure as one of the swarm intelligence for optimizing wireless body area network interference mitigation performance. In this research, we analyzes primary studies collected using predefined exploration strings on online databases with the help of Publish or Perish and by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) way. Articles were carefully selected for further analysis. It was found that very few researchers included optimization methods for swarm intelligence, especially PSO, in mitigating wireless body area network interference, whether for intra, inter, or cross-WBAN interference. This paper contributes to identifying the gap in using PSO for WBAN interference and also offers opportunities for using PSO both standalone and hybrid with other methods to further research on mitigating WBAN interference

    Opportunities and Challenges for Error Correction Scheme for Wireless Body Area Network: A Survey

    Get PDF
    This paper offers a review of different types of Error Correction Scheme (ECS) used in communication systems in general, which is followed by a summary of the IEEE standard for Wireless Body Area Network (WBAN). The possible types of channels and network models for WBAN are presented that are crucial to the design and implementation of ECS. Following that, a literature review on the proposed ECSs for WBAN is conducted based on different aspects. One aspect of the review is to examine what type of parameters are considered during the research work. The second aspect of the review is to analyse how the reliability is measured and whether the research works consider the different types of reliability and delay requirement for different data types or not. The review indicates that the current literatures do not utilize the constraints that are faced by WBAN nodes during ECS design. Subsequently, we put forward future research challenges and opportunities on ECS design and the implementation for WBAN when considering computational complexity and the energy-constrained nature of nodes

    Game-Theoretic Relay Selection and Power Control in Fading Wireless Body Area Networks

    Get PDF
    The trend towards personalized ubiquitous computing has led to the advent of a new generation of wireless technologies, namely wireless body area networks (WBANs), which connect the wearable devices into the Internet-of-Things. This thesis considers the problems of relay selection and power control in fading WBANs with energy-efficiency and security considerations. The main body of the thesis is formed by two papers. Ideas from probability theory are used, in the first paper, to construct a performance measure signifying the energy efficiency of transmission, while in the second paper, information-theoretic principles are leveraged to characterize the transmission secrecy at the wireless physical layer (PHY). The hypothesis is that exploiting spatial diversity through multi-hop relaying is an effective strategy in a WBAN to combat fading and enhance communication throughput. In order to analytically explore the problems of optimal relay selection and power control, proper tools from game theory are employed. In particular, non-cooperative game-theoretic frameworks are developed to model and analyze the strategic interactions among sensor nodes in a WBAN when seeking to optimize their transmissions in the uplink. Quality-of-service requirements are also incorporated into the game frameworks, in terms of upper bounds on the end-to-end delay and jitter incurred by multi-hop transmission, by borrowing relevant tools from queuing theory. The proposed game frameworks are proved to admit Nash equilibria, and distributed algorithms are devised that converge to stable Nash solutions. The frameworks are then evaluated using numerical simulations in conditions approximating actual deployment of WBANs. Performance behavior trade-offs are investigated in an IEEE 802.15.6-based ultra wideband WBAN considering various scenarios. The frameworks show remarkable promise in improving the energy efficiency and PHY secrecy of transmission, at the expense of an admissible increase in the end-to-end latency

    Study and overview on WBAN under IEEE 802.15.6

    Get PDF
    WBAN (wireless body area networks) is an upcoming technology which stands to be a base for wearable and implantable sensors. The IEEE 802.15.6 formulates the physical and medium access for body area networks. The Body area networks can be implemented in several applications like health monitoring, ambient living environments and consumer electronics. This paper gives a clear overview about the functions of WBAN. The medium access layers and the physical layers of IEEE 802.15.6 are deeply examined and studied in this work. The access mechanisms of the protocol are explained in this paper. A clear literature review has also been stated to know the current state of art of this technology. The future possibilities and area to be explored also has been defined in this work

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Improved multiple input multiple output blind equalization algorithms for medical implant communication

    Get PDF
    Medical implant sensor that is used to monitor the human physiology signals is helpful to improve the quality of life and prevent severe result from the chronic diseases. In order to achieve this, the wireless implant communication link that delivers the monitored signal to a multiple antennas external device is an essential portion. However, the existing conventional narrow band Medical Implant Communications System (MICS) has low data rate because of the bandlimited channel is allocated. To improve the data rate in the radio frequency communication, ultra-wide band technology has been proposed. However, the ultra-wide band technology is relatively new and requires living human to be the test subject in order to validate the technology performance. In this condition, the test on the new technology can rise ethical challenge. As a solution, we improve the data rate in the conventional narrow band MICS. The improvement of data rate on the narrow band implies the information bandwidth is larger than the allocated channel bandwidth, and therefore the high frequency components of the information can loss. In this case, the signal suffers the intersymbol-interference (ISI). Instead of that, the multiple antennas external device can receive the signal from other transmitting implant sensor which has the same operating frequency. As a result, the signal is further hampered by co-channel interference (CCI). To recover the signal from the ISI and CCI, multiple-input multiple output (MIMO) blind equalization that has source separation ability can be exploited. Cross-Correlation Constant Modulus Algorithm (CC-CMA) is the conventional MIMO blind equalization algorithm that can suppress ISI and CCI and able to perform source separation. However, CC-CMA has only been analyzed and simulated in the modulation of Phase Shift Keying (PSK). The performance of CC-CMA in multi-modulus modulation scheme such as 4-Pulse-amplitude modulation (PAM) and 16-Quadrature amplitude modulation (QAM), which has higher data rate than PSK, has not been analyzed. Therefore, our work is to analysis and optimize CC-CMA on the multi-modulus modulation scheme. From our analysis, we found that the cost function of CC-CMA is biased cost function. Instead of that, from our simulation, CC-CMA introduces an unexpected shrinking effect whereby the amplitudes of the equalizer outputs have been reduced, especially in multi-modulus modulation scheme. This shrinking effect is not severe in PSK because the decision of a PSK symbol is based on phase, but not amplitude. Unfortunately, this is severe in multi-modulus modulation scheme. To overcome this shrinking effect in multi-modulus modulation scheme, we propose Cross-Independent Constant Modulus Algorithm (CI-CMA). Based on the convergence analysis, we identify the new optimum dispersion value and mixing parameter in CI-CMA. From the simulation results, we confirm that CI-CMA is able to perform equalization and source separation in the multi-modulus modulation scheme. In order to improve the steady state performance of CI-CMA, we perform the steady state mean square error (MSE) analysis of CI-CMA using the energy preservation theorem that was developed by Mai and Sayed in 2001, and our result is more accurate than the previous work. From our analysis, only the reduction in adaptation step size can reduce the steady state MSE, but it is well known that the MSE is indeed a tradeoff with the speed of convergence. Therefore without sacrificing convergence speed, our last effort is to propose hybrid algorithms. The hybrid algorithms are done by combining a new adaptive constant modulus algorithm (ACMA), a decision directed algorithm and a cross-correlation function. From the simulation results, we found that the hybrid algorithms can show low steady state error and thereby improve the reliability of the communication link. The main achievement of this thesis is the discovery of new dispersion value through the convergence analysis
    corecore