8,153 research outputs found

    Efficient Broadcast in Opportunistic Networks using Optimal Stopping Theory

    Get PDF
    In this paper, we present a broadcast dissemination protocol for messages in opportunistic networks (OppNet) that is efficient in terms of energy consumption and network capacity usage, while not increasing the number of excluded nodes (nodes not receiving messages). The majority of the OppNet broadcast delivery schemes proposed in the literature, do not take into consideration that reducing energy and buffer usage is of paramount importance in these wireless networks normally consisting of small devices. In our protocol, broadcast messages are limited by carefully selecting their prospective forwarders (storers). The keystone of our protocol is the use of Optimal Stopping Theory, which selects the best message storers at every stage of the algorithm, while holding back broad message dissemination until convenient conditions are met. The broadcast efficiency of the proposed protocol out competes other OppNet broadcast proposals in four well-known scenarios. Furthermore, the protocol reduces the number of both dropped messages and nodes not receiving messages, thus maximising network capacity usage, and the span of the message deliver

    An efficient scheme for applying software updates in pervasive computing applications

    Get PDF
    The Internet of Things (IoT) offers a vast infrastructure of numerous interconnected devices capable of communicating and exchanging data. Pervasive computing applications can be formulated on top of the IoT involving nodes that can interact with their environment and perform various processing tasks. Any task is part of intelligent services executed in nodes or the back end infrastructure for supporting end users’ applications. In this setting, one can identify the need for applying updates in the software/firmware of the autonomous nodes. Updates are extensions or patches significant for the efficient functioning of nodes. Legacy methodologies deal with centralized approaches where complex protocols are adopted to support the distribution of the updates in the entire network. In this paper, we depart from the relevant literature and propose a distributed model where each node is responsible to, independently, initiate and conclude the update process. Nodes monitor a set of metrics related to their load and the performance of the network and through a time-optimized scheme identify the appropriate time to conclude the update process. We report on an infinite horizon optimal stopping model on top of the collected performance data. The aim is to make nodes capable of identifying when their performance and the performance of the network are of high quality to efficiently conclude the update process. We provide specific formulations and the analysis of the problem while extensive simulations and a comparison assessment reveal the advantages of the proposed solution

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    LEVERAGING PEER-TO-PEER ENERGY SHARING FOR RESOURCE OPTIMIZATION IN MOBILE SOCIAL NETWORKS

    Get PDF
    Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users in the vicinity through various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and let them discover and exchange information directly or in ad hoc manner. Despite their promise to enable many exciting applications, limited battery capacity of mobile devices has become the biggest impediment to these appli- cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing (i.e., the transfer of energy from the battery of one member of the mobile network to the battery of the another member) for the efficient utilization of scarce energy resources in the network. However, due to uncertain mobility and communication opportunities in the network, resource optimization in these opportunistic networks is very challenging. In this dissertation, we study energy utilization in three different applications in Mobile Social Networks and target to improve the energy efficiency in the network by benefiting from P2P energy sharing among the nodes. More specifi- xi cally, we look at the problems of (i) optimal energy usage and sharing between friendly nodes in order to reduce the burden of wall-based charging, (ii) optimal content and energy sharing when energy is considered as an incentive for carrying the content for other nodes, and (iii) energy balancing among nodes for prolonging the network lifetime. We have proposed various novel protocols for the corresponding applications and have shown that they outperform the state-of-the-art solutions and improve the energy efficiency in MSNs while the application requirements are satisfied
    • …
    corecore