11,346 research outputs found

    Metric Embedding via Shortest Path Decompositions

    Full text link
    We study the problem of embedding shortest-path metrics of weighted graphs into β„“p\ell_p spaces. We introduce a new embedding technique based on low-depth decompositions of a graph via shortest paths. The notion of Shortest Path Decomposition depth is inductively defined: A (weighed) path graph has shortest path decomposition (SPD) depth 11. General graph has an SPD of depth kk if it contains a shortest path whose deletion leads to a graph, each of whose components has SPD depth at most kβˆ’1k-1. In this paper we give an O(kmin⁑{1p,12})O(k^{\min\{\frac{1}{p},\frac{1}{2}\}})-distortion embedding for graphs of SPD depth at most kk. This result is asymptotically tight for any fixed p>1p>1, while for p=1p=1 it is tight up to second order terms. As a corollary of this result, we show that graphs having pathwidth kk embed into β„“p\ell_p with distortion O(kmin⁑{1p,12})O(k^{\min\{\frac{1}{p},\frac{1}{2}\}}). For p=1p=1, this improves over the best previous bound of Lee and Sidiropoulos that was exponential in kk; moreover, for other values of pp it gives the first embeddings whose distortion is independent of the graph size nn. Furthermore, we use the fact that planar graphs have SPD depth O(log⁑n)O(\log n) to give a new proof that any planar graph embeds into β„“1\ell_1 with distortion O(log⁑n)O(\sqrt{\log n}). Our approach also gives new results for graphs with bounded treewidth, and for graphs excluding a fixed minor

    Online Service with Delay

    Full text link
    In this paper, we introduce the online service with delay problem. In this problem, there are nn points in a metric space that issue service requests over time, and a server that serves these requests. The goal is to minimize the sum of distance traveled by the server and the total delay in serving the requests. This problem models the fundamental tradeoff between batching requests to improve locality and reducing delay to improve response time, that has many applications in operations management, operating systems, logistics, supply chain management, and scheduling. Our main result is to show a poly-logarithmic competitive ratio for the online service with delay problem. This result is obtained by an algorithm that we call the preemptive service algorithm. The salient feature of this algorithm is a process called preemptive service, which uses a novel combination of (recursive) time forwarding and spatial exploration on a metric space. We hope this technique will be useful for related problems such as reordering buffer management, online TSP, vehicle routing, etc. We also generalize our results to k>1k > 1 servers.Comment: 30 pages, 11 figures, Appeared in 49th ACM Symposium on Theory of Computing (STOC), 201
    • …
    corecore