95 research outputs found

    Properties and algorithms of the (n, k)-star graphs

    Get PDF
    The (n, k)-star interconnection network was proposed in 1995 as an attractive alternative to the n-star topology in parallel computation. The (n, k )-star has significant advantages over the n-star which itself was proposed as an attractive alternative to the popular hypercube. The major advantage of the (n, k )-star network is its scalability, which makes it more flexible than the n-star as an interconnection network. In this thesis, we will focus on finding graph theoretical properties of the (n, k )-star as well as developing parallel algorithms that run on this network. The basic topological properties of the (n, k )-star are first studied. These are useful since they can be used to develop efficient algorithms on this network. We then study the (n, k )-star network from algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms for basic communication, prefix computation, and sorting, etc. A literature review of the state-of-the-art in relation to the (n, k )-star network as well as some open problems in this area are also provided

    Efficient structural outlooks for vertex product networks

    Get PDF
    In this thesis, a new classification for a large set of interconnection networks, referred to as "Vertex Product Networks" (VPN), is provided and a number of related issues are discussed including the design and evaluation of efficient structural outlooks for algorithm development on this class of networks. The importance of studying the VPN can be attributed to the following two main reasons: first an unlimited number of new networks can be defined under the umbrella of the VPN, and second some known networks can be studied and analysed more deeply. Examples of the VPN include the newly proposed arrangement-star and the existing Optical Transpose Interconnection Systems (OTIS-networks). Over the past two decades many interconnection networks have been proposed in the literature, including the star, hyperstar, hypercube, arrangement, and OTIS-networks. Most existing research on these networks has focused on analysing their topological properties. Consequently, there has been relatively little work devoted to designing efficient parallel algorithms for important parallel applications. In an attempt to fill this gap, this research aims to propose efficient structural outlooks for algorithm development. These structural outlooks are based on grid and pipeline views as popular structures that support a vast body of applications that are encountered in many areas of science and engineering, including matrix computation, divide-and- conquer type of algorithms, sorting, and Fourier transforms. The proposed structural outlooks are applied to the VPN, notably the arrangement-star and OTIS-networks. In this research, we argue that the proposed arrangement-star is a viable candidate as an underlying topology for future high-speed parallel computers. Not only does the arrangement-star bring a solution to the scalability limitations from which the Abstract existing star graph suffers, but it also enables the development of parallel algorithms based on the proposed structural outlooks, such as matrix computation, linear algebra, divide-and-conquer algorithms, sorting, and Fourier transforms. Results from a performance study conducted in this thesis reveal that the proposed arrangement-star supports efficiently applications based on the grid or pipeline structural outlooks. OTIS-networks are another example of the VPN. This type of networks has the important advantage of combining both optical and electronic interconnect technology. A number of studies have recently explored the topological properties of OTIS-networks. Although there has been some work on designing parallel algorithms for image processing and sorting, hardly any work has considered the suitability of these networks for an important class of scientific problems such as matrix computation, sorting, and Fourier transforms. In this study, we present and evaluate two structural outlooks for algorithm development on OTIS-networks. The proposed structural outlooks are general in the sense that no specific factor network or problem domain is assumed. Timing models for measuring the performance of the proposed structural outlooks are provided. Through these models, the performance of various algorithms on OTIS-networks are evaluated and compared with their counterparts on conventional electronic interconnection systems. The obtained results reveal that OTIS-networks are an attractive candidate for future parallel computers due to their superior performance characteristics over networks using traditional electronic interconnects

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunächst das Phänomen von Metastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren eine effiziente Implementierung, die es löst

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    • …
    corecore