1,188 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    LOW-VOLTAGE LOW-POWER ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multiple voltage scheme with frequency variation for power minimization of pipelined circuits at high-level synthesis

    Full text link
    High-Level Synthesis (HLS) is defined as a translation process from a behavioral description into structural description. The high-level synthesis process consists of three interdependent phases: scheduling, allocation and binDing The order of the three phases varies depending on the design flow. There are three important quality measures used to support design decision, namely size, performance and power consumption. Recently, with the increase in portability, the power consumption has become a very dominant factor in the design of circuits. The aim of low-power high-level synthesis is to schedule operations to minimize switching activity and select low power modules while satisfying timing constraints. This thesis presents a heuristic that helps minimize power consumption by operating the functional units at multiple voltages and varied clock frequencies. The algorithm presented here deals with pipelined operations where multiple instance of the same operation are carried out. The algorithm was implemented using C++, on LINUX platform

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Design methodologies for variation-aware integrated circuits

    Get PDF
    The scaling of VLSI technology has spurred a rapid growth in the semiconductor industry. With the CMOS device dimension scaling to and beyond 90nm technology, it is possible to achieve higher performance and to pack more complex functionalities on a single chip. However, the scaling trend has introduced drastic variation of process and design parameters, leading to severe variability of chip performance in nanometer regime. Also, the manufacturing community projects CMOS will scale for three to four more generations. Since the uncertainties due to variations are expected to increase in each generation, it will significantly impact the performance of design and consequently the yield. Another challenging issue in the nanometer IC design is the high power consumption due to the greater packing density, higher frequency of operation and excessive leakage power. Moreover, the circuits are usually over-designed to compensate for uncertainties due to variations. The over-designed circuits not only make timing closure difficult but also cause excessive power consumption. For portable electronics, excessive power consumption may reduce battery life; for non-portable systems it may impose great difficulties in cooling and packaging. The objective of my research has been to develop design methodologies to address variations and power dissipation for reliable circuit operation. The proposed work has been divided into three parts: the first part addresses the issues related with power/ground noise induced by clock distribution network and proposes techniques to reduce power/ground noise considering the effects of process variations. The second part proposes an elastic pipeline scheme for random circuits with feedback loops. The proposed scheme provides a low-power solution that has the same variation tolerance as the conventional approaches. The third section deals with discrete buffer and wire sizing for link-based non-tree clock network, which is an energy efficient structure for skew tolerance to variations. For the power/ground noise problem, our approach could reduce the peak current and the delay variations by 50% and 51% respectively. Compared to conventional approach, the elastic timing scheme reduces power dissipation by 20% − 27%. The sizing method achieves clock skew reduction of 45% with a small increase in power dissipation
    corecore