2,736 research outputs found

    Cooperative Cognitive Relaying Under Primary and Secondary Quality of Service Satisfaction

    Full text link
    This paper proposes a new cooperative protocol which involves cooperation between primary and secondary users. We consider a cognitive setting with one primary user and multiple secondary users. The time resource is partitioned into discrete time slots. Each time slot, a secondary user is scheduled for transmission according to time division multiple access, and the remainder of the secondary users, which we refer to as secondary relays, attempt to decode the primary packet. Afterwards, the secondary relays employ cooperative beamforming to forward the primary packet and to provide protection to the secondary destination of the secondary source scheduled for transmission from interference. We characterize the diversity-multiplexing tradeoff of the primary source under the proposed protocol. We consider certain quality of service for each user specified by its required throughput. The optimization problem is stated under such condition. It is shown that the optimization problem is linear and can be readily solved. We show that the sum of the secondary required throughputs must be less than or equal to the probability of correct packets reception.Comment: This paper was accepted in PIMRC 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Cooperative Feedback for Multi-Antenna Cognitive Radio Networks

    Full text link
    Cognitive beamforming (CB) is a multi-antenna technique for efficient spectrum sharing between primary users (PUs) and secondary users (SUs) in a cognitive radio network. Specifically, a multi-antenna SU transmitter applies CB to suppress the interference to the PU receivers as well as enhance the corresponding SU-link performance. In this paper, for a multiple-input-single-output (MISO) SU channel coexisting with a single-input-single-output (SISO) PU channel, we propose a new and practical paradigm for designing CB based on the finite-rate cooperative feedback from the PU receiver to the SU transmitter. Specifically, the PU receiver communicates to the SU transmitter the quantized SU-to-PU channel direction information (CDI) for computing the SU transmit beamformer, and the interference power control (IPC) signal that regulates the SU transmission power according to the tolerable interference margin at the PU receiver. Two CB algorithms based on cooperative feedback are proposed: one restricts the SU transmit beamformer to be orthogonal to the quantized SU-to-PU channel direction and the other relaxes such a constraint. In addition, cooperative feedforward of the SU CDI from the SU transmitter to the PU receiver is exploited to allow more efficient cooperative feedback. The outage probabilities of the SU link for different CB and cooperative feedback/feedforward algorithms are analyzed, from which the optimal bit-allocation tradeoff between the CDI and IPC feedback is characterized.Comment: 26 pages; to appear in IEEE Trans. Signal Processin

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ
    corecore