7,531 research outputs found

    Trajectory Deformations from Physical Human-Robot Interaction

    Full text link
    Robots are finding new applications where physical interaction with a human is necessary: manufacturing, healthcare, and social tasks. Accordingly, the field of physical human-robot interaction (pHRI) has leveraged impedance control approaches, which support compliant interactions between human and robot. However, a limitation of traditional impedance control is that---despite provisions for the human to modify the robot's current trajectory---the human cannot affect the robot's future desired trajectory through pHRI. In this paper, we present an algorithm for physically interactive trajectory deformations which, when combined with impedance control, allows the human to modulate both the actual and desired trajectories of the robot. Unlike related works, our method explicitly deforms the future desired trajectory based on forces applied during pHRI, but does not require constant human guidance. We present our approach and verify that this method is compatible with traditional impedance control. Next, we use constrained optimization to derive the deformation shape. Finally, we describe an algorithm for real time implementation, and perform simulations to test the arbitration parameters. Experimental results demonstrate reduction in the human's effort and improvement in the movement quality when compared to pHRI with impedance control alone

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Haptic Interface for Center of Workspace Interaction

    Get PDF
    We build upon a new interaction style for 3D interfaces, called the center of workspace interaction. This style of interaction is defined with respect to a central fixed point in 3D space, conceptually within arm\u27s length of the user. For demonstration, we show a haptically enabled fish tank VR that utilizes a set of interaction widgets to support rapid navigation within a large virtual space. The fish tank VR refers to the creation of a small but high quality virtual reality that combines a number of technologies, such as head-tracking and stereo glasses, to their mutual advantag

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Mid-air haptic rendering of 2D geometric shapes with a dynamic tactile pointer

    Get PDF
    An important challenge that affects ultrasonic midair haptics, in contrast to physical touch, is that we lose certain exploratory procedures such as contour following. This makes the task of perceiving geometric properties and shape identification more difficult. Meanwhile, the growing interest in mid-air haptics and their application to various new areas requires an improved understanding of how we perceive specific haptic stimuli, such as icons and control dials in mid-air. We address this challenge by investigating static and dynamic methods of displaying 2D geometric shapes in mid-air. We display a circle, a square, and a triangle, in either a static or dynamic condition, using ultrasonic mid-air haptics. In the static condition, the shapes are presented as a full outline in mid-air, while in the dynamic condition, a tactile pointer is moved around the perimeter of the shapes. We measure participants’ accuracy and confidence of identifying shapes in two controlled experiments (n1 = 34, n2 = 25). Results reveal that in the dynamic condition people recognise shapes significantly more accurately, and with higher confidence. We also find that representing polygons as a set of individually drawn haptic strokes, with a short pause at the corners, drastically enhances shape recognition accuracy. Our research supports the design of mid-air haptic user interfaces in application scenarios such as in-car interactions or assistive technology in education

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure
    corecore