329 research outputs found

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    A design technique for optimizing resonant coils and the energy transfer of inductive links.

    Get PDF
    Power transfer efficiency (PTE) is a key performance parameter in development work on resonant inductive power transfer (IPT) systems. Geometrically optimizing the transmitter (Tx) and receiver (Rx) coil pair is a way of improving the IPT system's efficiency. In this article, a new figure-of-merit (FoM) is proposed to find an optimum coil geometry which maximizes the PTE. The employed FoM parameter, called the 'strong coupling factor' (Pscf), is defined such that its value indicates how strongly the Tx and Rx coils are linked together. Considering the IPT application and its physical size constraints, a proper selection method for identifying the numerical value of Pscf is essential for optimal coil geometry design. This article presents an iterative algorithm to assist in the selection of the most favorable Pscf value which provides maximized PTE for the designed optimum coil geometry. Design examples of two nominal IPT systems at frequencies of 415 and 0.1 MHz are used to investigate the design algorithm. Theoretical calculations show the optimum geometry designed for the IPT system operating at 415 MHz, with coupling coefficient (K) of 0.2, can achieve maximum PTE of 85.70%. Measurements presented from a practical Tx/Rx coil pair in the IPT link operating at 0.1 MHz, with K=0.05, show a PTE of 83.10% against a calculated PTE of 84.11% validating the design process.This article is an expanded version from the IEEE Wireless Power Week, London, U.K., June 17–20, 2019

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    Wireless Technologies for Implantable Devices

    Get PDF
    Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices

    Flexible Wirelessly Powered Implantable Device

    Get PDF
    Brain implantable devices have various limitations in terms of size, power, biocompatibility and mechanical properties that need to be addressed. This paper presents a neural implant that is powered wirelessly using a flexible biocompatible antenna. This delivers power to an LED at the end of the shaft to provide a highly efficient demonstration. The proposed design in this study combines mechanical properties and practicality given the numerous constraints of this implant typology. We have applied a modular structure approach to the design of this device considering three modules of antenna, conditioner circuit and shank. The implant was fabricated using a flexible substrate of Polyimide and encapsulated by PDMS for chronic implantation. In addition, finite element method COMSOL Multiphysics simulation of mechanical forces acting on the implant and shank was carried out to validate a viable shank conformation-encapsulation combination that will safely work under operational stress with a satisfactory margin of safety
    • …
    corecore