472 research outputs found

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    A Review of Hybrid Battery Management System (H-BMS) for EV

    Get PDF
    Significant to a major pollution contributor in passenger vehicles, electric vehicles are more acceptable to use on the road. Electric Vehicles (EVs) burn energy based on the usage of the battery. The usage of the battery in EVs is monitored and controlled by Battery Management System (BMS). A few factors monitor and control Battery Management System (BMS). This paper reviewed the battery charging technology and Remote Terminal Unit (RTU) development as a Hybrid Battery Management System (H-BMS) for Electric Vehicle (EV)

    Random network coding for secure packet transmission in SCADA networks

    Get PDF

    Open source SCADA systems for small renewable power generation

    Get PDF
    Low cost monitoring and control is essential for small renewable power systems. While large renewable power systems can use existing commercial technology for monitoring and control, that is not cost-effective for small renewable generation. Such small assets require cost-effective, flexible, secure, and reliable real-time coordinated data monitoring and control systems. Supervisory control and data acquisition (SCADA) is the perfect technology for this task. The available commercial SCADA solutions are mostly pricey and economically unjustifiable for smaller applications. They also pose interoperability issues with the existing components which are often from multiple vendors. Therefore, an open source SCADA system represents the most flexible and the most cost-effective SCADA solution. This thesis has been done in two phases. The first phase demonstrates the design and dynamic simulation of a small hybrid power system with a renewable power generation system as a case study. In the second phase, after an extensive study of the proven commercial SCADA solutions and some open source SCADA packages, three different secure, reliable, low-cost open source SCADA options are developed using the most recent SCADA architecture, the Internet of Things. The implemented prototypes of the three open source SCADA systems were tested extensively with a small renewable power system (a solar PV system). The results show that the developed open source SCADA systems perform optimally and accurately, and could serve as viable options for smaller applications such as renewable generation that cannot afford commercial SCADA solutions

    Wide Area Measurement Systems

    Get PDF

    Decision making process in keystroke dynamics

    Get PDF
    Computer system intrusion often happens nowadays. Various methods have been introduced to reduce and prevent these intrusions, however no method was 100% proven to be effective. Therefore, to improve the computer’s security, this writing will explain the application of KD in the application system. The effectiveness of KD could not guarantee one hundred percent to prevent the computer intrusion, but it can be used as a second level of security after the login page in the application system. The pattern and time taken while typing by an individual is the core for the second level of security check after the login page. This writing will elaborate and conclude past studies related to KD on the aspects of decisionmaking process. Various methods of processing KD data that have been used are listed and the results of the study are compared. The results of this writing are expected to help new researchers in the process of evaluating KD data

    SCADA and related technologies for irrigation district modernization

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization: a USCID water management conference on October 26-29, 2005 in Vancouver, Washington.Includes bibliographical references.Overview of Supervisory Control and Data Acquisition (SCADA) -- Total Channel Control™ - The value of automation in irrigation distribution systems -- Design and implementation of an irrigation canal SCADA -- All American Canal Monitoring Project -- Taking closed piping flowmeters to the next level - new technologies support trends in data logging and SCADA systems -- Real-time model-based dam automation: a case study of the Piute Dam -- Effective implementation of algorithm theory into PLCs -- Optimal fuzzy control for canal control structures -- SCADA over Zigbee™ -- Synchronous radio modem technology for affordable irrigation SCADA systems -- A suggested criteria for the selection of RTUs and sensors -- Irrigation canals in Spain: the integral process of modernization -- Ten years of SCADA data quality control and utilization for system management and planning modernization -- Moderately priced SCADA implementation -- Increasing peak power generation using SCADA and automation: a case study of the Kaweah River Power Authority -- Eastern Irrigation District canal automation and Supervisory Control and Data Acquisition (SCADA) -- Case study on design and construction of a regulating reservoir pumping station -- Saving water with Total Channel Control® in the Macalister Irrigation District, Australia -- Leveraging SCADA to modernize operations in the Klamath Irrigation Project -- A 2005 update on the installation of a VFD/SCADA system at Sutter Mutual Water Company -- Truckee Carson Irrigation District Turnout Water Measurement Program -- The myth of a "Turnkey" SCADA system and other lessons learned -- Canal modernization in Central California Irrigation District - case study -- Remote monitoring and operation at the Colorado River Irrigation District -- Web-based GIS decision support system for irrigation districts -- Using RiverWare as a real time river systems management tool -- Submerged venturi flume -- Ochoco Irrigation District telemetry case study -- Uinta Basin Replacement Project: a SCADA case study in managing multiple interests and adapting to loss of storage -- Training SCADA operators with real-time simulation -- Demonstration of gate control with SCADA system in Lower Rio Grande Valley, in Texas -- Incorporating sharp-crested weirs into irrigation SCADA systems

    A Survey on Cryptography Key Management Schemes for Smart Grid

    Get PDF
    A Smart grid is a modern electricity delivery system. It is an integration of energy systems and other necessary elements including traditional upgrades and new grid technologies with renewable generation and increased consumer storage. It uses information and communication technology (ICT) to operate, monitor and control data between the generation source and the end user. Smart grids have duplex power flow and communication to achieve high efficiency, reliability, environmental, economics, security and safety standards. However, along with unique facilities, smart grids face security challenges such as access control, connectivity, fault tolerance, privacy, and other security issues. Cyber-attacks, in the recent past, on critical infrastructure including smart grids have highlighted security as a major requirement for smart grids. Therefore, cryptography and key management are necessary for smart grids to become secure and realizable. Key management schemes are processes of key organizational frameworks, distribution, generation, refresh and key storage policies. Currently, several secure schemes, related to key management for smart grid have been proposed to achieve end-to-end secure communication. This paper presents a comprehensive survey and discussion on the current state of the key management of smart grids

    Contribution to the operation of smart rural distribution grid with energy resources for improvement of the quality of service

    Get PDF
    This Thesis aims for contributing in the deployment and operation of Smart Grid, in isolated rural areas. As it would be expected, technological developments and investments in the electrical field have mainly focused on urban and industrial areas where the energy demand is high, as well as, the possibility to recover easily the investment. Therefore, difficult accessing areas where population and electrical demand are low are less attractive to invest. For this reason, this Thesis, in parallel to the European project known as Smart Rural Grid, has focused on the rural grid development. In this sense, the Thesis contributes directly in the design, conception and justification of an innovate architecture for rural systems. The architecture has been deployed and tested at the end of a medium voltage line of Estabanell Energia in Vallfogona del Ripollès. In addition, the presented architecture is characterised to integrate power electronics with embedded battery systems, an innovative management system and a proper telecommunication network in order to gain robustness, flexibility and hosting capacity for distributed and renewable generation. To sum up, the Thesis has focused on the design and development of new operation modes, algorithms and equipment that allow to manage automatically and optimally the energy resources; like power electronics, energy storage systems, distributed and renewable generation, and controllable loads. These strategies are able to correct common issues in rural grids, such as voltage variations and electrical losses. In addition, they improve and ensure the power quality and supply continuity, contribute to reduce operational costs and infrastructure optimization and deferral.Aquesta tesi vol contribuir en el desplegament de les futures xarxes elèctriques intel.ligents, en entorns rurals que habitualment són oblidats. Cal mencionar que els principals avenços tecnològics i les inversions per part dels gestors de la xarxa s'han centrat en entorns urbans i industrials, ja que aquests solen demandar grans quantitats d'energia, fet que facilita la recuperació de la inversió. Per tant, en un entorn on la densitat de població i la demanda energètica és baixa i a més l'orografia és complexa resulta menys atractiu invertir-hi. Per aquest motiu, la tesi, en paral.lel al projecte Europeu Smart Rural Grid, s'ha centrat en el desenvolupament de les xarxes elèctriques en entorns rurals. El principal objectiu de la tesi i alhora del projecte Smart Rural Grid és desenvolupar tecnologies per concebre les futures xarxes en entorns rurals. Aquestes han de permetre incrementar la baixa eficiència, qualitat i resiliència de la xarxa. En aquest sentit, la tesi ha contribuït en la concepció, disseny i justificació d'una innovadora arquitectura. Aquesta arquitectura, s'ha dut a terme en el final d'una línia de mitja tensió d'Estabanell Energia a Vallfogona del Ripollès. A més, aquesta arquitectura es caracteritza per integrar electrònica de potència, sistemes elèctrics d'emmagatzemament, un innovador sistema de gestió i de telecomunicacions, poden proporcionar a la xarxa una major robustesa, flexibilitat i capacitat per integrar a la nova generació distribuïda i renovable. D'altre banda, la Tesi també s'ha centrat en la concepció i desenvolupament de nous modes d'operació, algoritmes i dispositius que permeten automatitzar i optimitzar la gestió dels recursos distribuïts; és a dir, la electrònica de potència, els sistemes d'emmagatzemament, la generació renovable i distribuïda i les càrregues controlables. Aquestes estratègies permeten solventar els problemes habituals en aquest tipus de xarxes, com per exemple les variacions de tensió i les pèrdues. A més, també milloren i asseguren la qualitat i continuïtat del subministrament, ajuden a reduir els costos d'operació i retrassar la inversió en nova infraestructur
    corecore