7,014 research outputs found

    The Strahler number of a parity game

    Get PDF
    The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices~n and linear in (d/2k)k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees. It is shown that the Strahler number of a parity game is a robust parameter: it coincides with its alternative version based on trees of progress measures and with the register number defined by Lehtinen~(2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/2k)k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020). The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off kā‹…lg(d/k)=O(logn) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d=2O(lgnāˆš) and k=O(lgnāˆ’āˆš)

    On weighted time optimal control for linear hybrid automata using quantifier elimination

    Get PDF
    This paper considers the optimal control problem for linear hybrid automata. In particular, it is shown that the problem can be transformed into a constrained optimization problem whose constraints are a set of inequalities with quantifiers. Quantifier Elimination (QE) techniques are employed in order to derive quantifier free inequalities that are linear. The optimal cost is obtained using linear programming. The optimal switching times and optimal continuous control inputs are computed and used in order to derive the optimal hybrid controller. Our results areapplied to an air traffic management example

    Profinite Techniques for Probabilistic Automata and the Markov Monoid Algorithm

    Get PDF
    We consider the value 1 problem for probabilistic automata over finite words: it asks whether a given probabilistic automaton accepts words with probability arbitrarily close to 1. This problem is known to be undecidable. However, different algorithms have been proposed to partially solve it; it has been recently shown that the Markov Monoid algorithm, based on algebra, is the most correct algorithm so far. The first contribution of this paper is to give a characterisation of the Markov Monoid algorithm. The second contribution is to develop a profinite theory for probabilistic automata, called the prostochastic theory. This new framework gives a topological account of the value 1 problem, which in this context is cast as an emptiness problem. The above characterisation is reformulated using the prostochastic theory, allowing us to give a simple and modular proof.Comment: Conference version: STACS'2016, Symposium on Theoretical Aspects of Computer Science Journal version: TCS'2017, Theoretical Computer Scienc
    • ā€¦
    corecore