114 research outputs found

    Smart helmet: wearable multichannel ECG & EEG

    Get PDF
    Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet

    Design and Implementation of a Motif-based Compression Algorithm for Biometric Signals

    Get PDF
    Wearable devices are becoming a natural and economic means to gather biometric data from users: this thesis is centered around lossy data compression techniques, whose aim is to minimize the amount of information that is to be stored on their onboard memory and subsequently transmitted over wireless interfaces. A new class of codebook based (CB) compression algorithms is proposed, designed to be energy efficient, online and amenable to any type of signal exhibiting recurrent patternsope

    Computationally Efficient QRS Detection Analysis In Electrocardiogram Based On Dual-Slope Method

    Get PDF
    A dramatic growth of interest for wearable technology has been fostered by recent technological advances in sensors, low-power integrated circuits and wireless communications. This interest originates from the need of monitoring a patient over extensive period of time. For cardiac patients, wearable heart monitoring sensors have already become a life-saving intervention ensuring continuous monitoring during daily life. Therefore, it is essential for an accurate monitoring and diagnosis of heart patients. Patients can be equipped with wireless, miniature and lightweight sensors. The sensors temporarily store physiological data and then periodically upload the data to a database server. These recorded data sets are then analyzed to predict any possibility of worsening patient\u27s situation or explored to assess the effect of clinical intervention. To obtain accurate response with less computational complexity as well as long battery life time, there is a demand of developing fast and accurate algorithm and prototypes for wearable heart monitoring sensors. A computationally efficient QRS detection algorithm is indispensable for low power operation on electrocardiogram (ECG) signal. In need of detecting QRS complex, most of the early works were proposed based on derivatives of ECG signal. They can be easily implemented with high computational speed. But owing to the inherent variability in ECG, these methods are highly affected by large derivatives of baseline noises. Algorithms based on neural network (NN) showed relatively robust performance against noise but requires exhaustive training and estimation of model parameter. On the other hand, wavelet based methods have the choice problem of mother wavelet. Hence, none of these methods is suitable for giving a long battery performance in wearable devices with high accuracy. Recently, Wang et al. proposed a novel dual slope QRS detection algorithm which has less computational complexity as well as high accuracy. Considering that the width of the QRS complex is relatively fixed, this algorithm is based on the fact that the largest change of slope usually happens at the peak of QRS complex. The hardware requirement is also low. However, the method has a set of time consuming slope calculations on both sides of each sample. To avoid such time consuming slope calculation, only one sample on each side can be highlighted. In addition, the multiplication of the left and right hand side slope should give us a very high value in QRS complex. The goal of this thesis is to develop a new computationally efficient method to detect QRS complexes and compare with the other renowned QRS detection algorithms. MIT-BIH arrhythmia database based on patients of different heart diseases and database containing ECG from healthy subjects are used. To analyze the performance, false negative (FN) and false positive (FP) are evaluated. A false negative (FN) occurs when algorithm fails to detect an actual QRS complex quoted in the corresponding annotation file of the database record and a false positive (FP) means a false beat detection. Error rate (ER) , Sensitivity (Se) and Specificity (Sp) are calculated using FP and FN

    DELINEATION OF ECG FEATURE EXTRACTION USING MULTIRESOLUTION ANALYSIS FRAMEWORK

    Get PDF
    ECG signals have very features time-varying morphology, distinguished as P wave, QRS complex, and T wave. Delineation in ECG signal processing is an important step used to identify critical points that mark the interval and amplitude locations in the features of each wave morphology. The results of ECG signal delineation can be used by clinicians to associate the pattern of delineation point results with morphological classes, besides delineation also produces temporal parameter values of ECG signals. The delineation process includes detecting the onset and offset of QRS complex, P and T waves that represented as pulse width, and also the detection of the peak from each wave feature. The previous study had applied bandpass filters to reduce amplitude of P and T waves, then the signal was passed through non-linear transformations such as derivatives or square to enhance QRS complex. However, the spectrum bandwidth of QRS complex from different patients or same patient may be different, so the previous method was less effective for the morphological variations in ECG signals. This study developed delineation from the ECG feature extraction based on multiresolution analysis with discrete wavelet transform. The mother wavelet used was a quadratic spline function with compact support. Finally, determination of R, T, and P wave peaks were shown by zero crossing of the wavelet transform signals, while the onset and offset were generated from modulus maxima and modulus minima. Results show the proposed method was able to detect QRS complex with sensitivity of 97.05% and precision of 95.92%, T wave detection with sensitivity of 99.79% and precision of 96.46%, P wave detection with sensitivity of 56.69% and precision of 57.78%. The implementation in real time analysis of time-varying ECG morphology will be addressed in the future research

    PROCESS AWARE ANALOG-CENTRIC SINGLE LEAD ECG ACQUISITION AND CLASSIFICATION CMOS FRONTEND

    Get PDF
    The primary objective of this research work is the development of a low power single-lead ECG analog front-end (AFE) architecture which includes acquisition, digitization, process aware efficient gain and frequency control mechanism and a low complexity classifier for the detecting asystole, extreme bardycardia and tachycardia. Recent research on ECG recording systems focuses on the design of a compact single-lead wearable/portable devices with ultra-low-power consumption and in-built hardware for diagnosis and prognosis. Since, the amplitude of the ECG signal varies from hundreds of µV to a few mV, and has a bandwidth of DC to 250 Hz, conventional front-ends use an instrument amplifier followed by a programmable gain amplifier (PGA) to amplify the input ECG signal appropriately. This work presents an mixed signal ECG fronted with an ultra-low power two-stage capacitive-coupled signal conditioning circuit (or an AFE), providing programmable amplification along with tunable 2nd order high pass and lowpass filter characteristics. In the contemporary state-of-the-art ECG recording systems, the gain of the amplifier is controlled by external digital control pins which are in turn dynamically controlled through a DSP. Therefore, an efficient automatic gain control mechanism with minimal area overhead and consuming power in the order of nano watts only. The AGC turns the subsequent ADC on only after output of the PGA (or input of the ADC) reaches a level for which the ADC achieves maximum signal-to-noise-ratio (SNR), hence saving considerable startup power and avoiding the use of DSP. Further, in any practical filter design, the low pass cut-off frequency is prone to deviate from its nominal value across process and temperature variations. Therefore, post-fabrication calibration is essential, before the signal is fed to an ADC, to minimize this deviation, prevent signal degradation due to aliasing of higher frequencies into the bandwidth for classification of ECG signals, to switch to low resolution processing, hence saving power and enhances battery lifetime. Another short-coming noticed in the literature published so far is that the classification algorithm is implemented in digital domain, which turns out to be a power hungry approach. Moreover, Although analog domain implementations of QRS complexes detection schemes have been reported, they employ an external micro-controller to determine the threshold voltage. In this regard, finally a power-efficient low complexity CMOS fully analog classifier architecture and a heart rate estimator is added to the above scheme. It reduces the overall system power consumption by reducing the computational burden on the DSP. The complete proposed scheme consists of (i) an ultra-low power QRS complex detection circuit using an autonomous dynamic threshold voltage, hence discarding the need of any external microcontroller/DSP and calibration (ii) a power efficient analog classifier for the detection of three critical alarm types viz. asystole, extreme bradycardia and tachycardia. Additionally, a heart rate estimator that provides the number of QRS complexes within a period of one minute for cardiac rhythm (CR) and heart rate variability (HRV) analysis. The complete proposed architecture is implemented in UMC 0.18 µm CMOS technology with 1.8 V supply. The functionality of each of the individual blocks are successfully validated using postextraction process corner simulations and through real ECG test signals taken from the PhysioNet database. The capacitive feedback amplifier, Σ∆ ADC, AGC and the AFT are fabricated, and the measurement results are discussed here. The analog classification scheme is successfully validated using embed NXP LPC1768 board, discrete peak detector prototype and FPGA software interfac

    Liikeartefaktat elektrokardiografiassa

    Get PDF
    Movement of the patient during electrocardiograph (ECG) recording is a severe source of artifacts. Recent technical developments have enabled ECG recording without continuous supervision by experts. However, ECG recording outside of hospitals is prone to poor quality and movement artifacts. Therefore, it is important to study how and how much ECG recordings are affected by movement. Movement artifacts can hide signal components or mimic them, which causes false negative or false positive detections. Methods to manage movement artifacts include both computational and non-computational approaches. Computational approaches include, for example, adaptive filtering and machine learning methods. Additional variables that correlate with the artifact sources can be utilized in artifact recognition. For example, acceleration, impedance, and pressure signals have been studied as possible movement references. These additional signals are recorded by sensors that are placed on the ECG electrodes or on the patient’s body. In this thesis, the effect of movement artifacts is quantified using a simulation. The simulation makes use of open ECG databases. This study investigates how automated ECG analysis is affected by incremental increase in the movement artifact level. According to the results QRS detection statistics worsen with increased artifact levels. Capturing a movement reference for ECG is studied by experimental research. ECG and inertial measurement unit signals were recorded during different movements in order to analyze the creation of movement artifacts and movement reference signals. According to the results, placement of the movement reference signal sensor has a significant effect on the results. Different movements are captured better by different sensors and affect different ECG leads with different strengths.Potilaan liike sydänsähkökäyrämittauksen (EKG) aikana on merkittävä artefaktien lähde. Viimeaikainen teknologinen kehitys on mahdollistanut EKG-mittauksen ilman asiantuntijoiden jatkuvaa valvontaa. EKG-mittaukset sairaalaolosuhteiden ulkopuolella ovat kuitenkin erityisen alttiita huonolle signaalilaadulle ja liikeartefaktoille. Tämän vuoksi on tärkeää tutkia, miten ja kuinka paljon liike vaikuttaa EKG-mittauksiin. Liikeartefaktat voivat joko peittää tai jäljitellä EKG-signaalin eri osia, aiheuttaen vääriä negatiivisia tai vääriä positiivisia havaintoja. Liikeartefaktojen vaikutusta voidaan vähentää sekä laskennallisten että muiden menetelmien avulla. Laskennallisia menetelmiä ovat esimerkiksi adaptiivinen suodatus ja koneoppimismenetelmät. Artefaktojen lähteen kanssa korreloivia muuttujia mittaamalla voidaan edistää artefaktojen tunnistusta EKG-signaalista. Esimerkiksi kiihtyvyys-, impedanssi- ja painesignaalien käyttöä liikereferensseinä on tutkittu. Kyseisiä referenssisignaaleja voidaan mitata EKG-elektrodeihin tai potilaan kehoon kiinnitettävillä sensoreilla. Liikeartefaktojen vaikutuksen suuruutta tutkitaan tässä työssä simulaation avulla. Simulaatiossa hyödynnetään avoimia EKG-tietokantoja. Tutkimuksessa tarkastellaan sitä, miten vähittäinen liikeartefaktatason kasvu vaikuttaa automaattiseen EKG-analyysiin. Tulosten mukaan QRS-detektioon liittyvät tilastot huononevat artefaktatason kasvaessa. Liikereferenssin luomista tarkastellaan kokeellisen tutkimuksen avulla. EKG- ja inertiamittausyksikkö-signaaleja mitattiin erilaisten liikkeiden aikana, jotta voitaisiin havainnoida liikeartefaktojen ja liikesignaalin syntymistä. Tulosten mukaan liikereferenssiä mittaavan sensorin sijoituspaikalla on merkittävä vaikutus tuloksiin. Tietyt liikkeet saadaan paremmin mitattua eri tavoin sijoitettujen sensorien avulla. Lisäksi liikkeet vaikuttavat eri vahvuuksilla eri EKG-kytkentöihin

    Estrazione non invasiva del segnale elettrocardiografico fetale da registrazioni con elettrodi posti sull’addome della gestante (Non-invasive extraction of the fetal electrocardiogram from abdominal recordings by positioning electrodes on the pregnant woman’s abdomen)

    Get PDF
    openIl cuore è il primo organo che si sviluppa nel feto, particolarmente nelle primissime settimane di gestazione. Rispetto al cuore adulto, quello fetale ha una fisiologia ed un’anatomia significativamente differenti, a causa della differente circolazione cardiovascolare. Il benessere fetale si valuta monitorando l’attività cardiaca mediante elettrocardiografia fetale (ECGf). L’ECGf invasivo (acquisito posizionando elettrodi allo scalpo fetale) è considerato il gold standard, ma l’invasività che lo caratterizza ne limita la sua applicabilità. Al contrario, l’uso clinico dell’ECGf non invasivo (acquisito posizionando elettrodi sull’addome della gestante) è limitato dalla scarsa qualità del segnale risultante. L’ECGf non invasivo si estrae da registrazioni addominali, che sono corrotte da differenti tipi di rumore, fra i quali l’interferenza primaria è rappresentata dall’ECG materno. Il Segmented-Beat Modulation Method (SBMM) è stato da me recentemente proposto come una nuova procedura di filtraggio basata sul calcolo del template del battito cardiaco. SBMM fornisce una stima ripulita dell’ECG estratto da registrazioni rumorose, preservando la fisiologica variabilità ECG del segnale originale. Questa caratteristica è ottenuta grazie alla segmentazione di ogni battito cardiaco per indentificare i segmenti QRS e TUP, seguito dal processo di modulazione/demodulazione (che include strecciamento e compressione) del segmento TUP, per aggiustarlo in modo adattativo alla morfologia e alla durata di ogni battito originario. Dapprima applicato all’ECG adulto al fine di dimostrare la sua robustezza al rumore, l’SBMM è stato poi applicato al caso fetale. Particolarmente significativi sono i risultati relativi alle applicazioni su ECGf non invasivo, dove l’SBMM fornisce segnali caratterizzati da un rapporto segnale-rumore comparabile a quello caratterizzante l’ECGf invasivo. Tuttavia, l’SBMM può contribuire alla diffusione dell’ECGf non invasiva nella pratica clinica.The heart is the first organ that develops in the fetus, particularly in the very early stages of pregnancy. Compared to the adult heart, the physiology and anatomy of the fetal heart exhibit some significant differences. These differences originate from the fact that the fetal cardiovascular circulation is different from the adult circulation. Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography (fECG). Invasive fECG (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of non-invasive fECG (acquired through abdominal electrodes) has so far been limited by its poor signal quality. Non-invasive fECG is extracted from the abdominal recording and is corrupted by different kind of noise, among which maternal ECG is the main interference. The Segmented-Beat Modulation Method (SBMM) was recently proposed by myself as a new template-based filtering procedure able to provide a clean ECG estimation from a noisy recording by preserving physiological ECG variability of the original signal. The former feature is achieved thanks to a segmentation procedure applied to each cardiac beat in order to identify the QRS and TUP segments, followed by a modulation/demodulation process (involving stretching and compression) of the TUP segments to adaptively adjust each estimated cardiac beat to the original beat morphology and duration. SBMM was first applied to adult ECG applications, in order to demonstrate its robustness to noise, and then to fECG applications. Particularly significant are the results relative to the non-invasive applications, where SBMM provided fECG signals characterized by a signal-to-noise ratio comparable to that characterizing invasive fECG. Thus, SBMM may contribute to the spread of this noninvasive fECG technique in the clinical practice.INGEGNERIA DELL'INFORMAZIONEAgostinelli, AngelaAgostinelli, Angel

    Design of Low Power Algorithms for Automatic Embedded Analysis of Patch ECG Signals

    Get PDF
    corecore