16,625 research outputs found

    Prescribed Performance Control Guided Policy Improvement for Satisfying Signal Temporal Logic Tasks

    Full text link
    Signal temporal logic (STL) provides a user-friendly interface for defining complex tasks for robotic systems. Recent efforts aim at designing control laws or using reinforcement learning methods to find policies which guarantee satisfaction of these tasks. While the former suffer from the trade-off between task specification and computational complexity, the latter encounter difficulties in exploration as the tasks become more complex and challenging to satisfy. This paper proposes to combine the benefits of the two approaches and use an efficient prescribed performance control (PPC) base law to guide exploration within the reinforcement learning algorithm. The potential of the method is demonstrated in a simulated environment through two sample navigational tasks.Comment: This is the extended version of the paper accepted to the 2019 American Control Conference (ACC), Philadelphia (to be published

    Incremental Sampling-based Algorithm for Minimum-violation Motion Planning

    Get PDF
    This paper studies the problem of control strategy synthesis for dynamical systems with differential constraints to fulfill a given reachability goal while satisfying a set of safety rules. Particular attention is devoted to goals that become feasible only if a subset of the safety rules are violated. The proposed algorithm computes a control law, that minimizes the level of unsafety while the desired goal is guaranteed to be reached. This problem is motivated by an autonomous car navigating an urban environment while following rules of the road such as "always travel in right lane'' and "do not change lanes frequently''. Ideas behind sampling based motion-planning algorithms, such as Probabilistic Road Maps (PRMs) and Rapidly-exploring Random Trees (RRTs), are employed to incrementally construct a finite concretization of the dynamics as a durational Kripke structure. In conjunction with this, a weighted finite automaton that captures the safety rules is used in order to find an optimal trajectory that minimizes the violation of safety rules. We prove that the proposed algorithm guarantees asymptotic optimality, i.e., almost-sure convergence to optimal solutions. We present results of simulation experiments and an implementation on an autonomous urban mobility-on-demand system.Comment: 8 pages, final version submitted to CDC '1

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    MDP Optimal Control under Temporal Logic Constraints

    Get PDF
    In this paper, we develop a method to automatically generate a control policy for a dynamical system modeled as a Markov Decision Process (MDP). The control specification is given as a Linear Temporal Logic (LTL) formula over a set of propositions defined on the states of the MDP. We synthesize a control policy such that the MDP satisfies the given specification almost surely, if such a policy exists. In addition, we designate an "optimizing proposition" to be repeatedly satisfied, and we formulate a novel optimization criterion in terms of minimizing the expected cost in between satisfactions of this proposition. We propose a sufficient condition for a policy to be optimal, and develop a dynamic programming algorithm that synthesizes a policy that is optimal under some conditions, and sub-optimal otherwise. This problem is motivated by robotic applications requiring persistent tasks, such as environmental monitoring or data gathering, to be performed.Comment: Technical report accompanying the CDC2011 submissio

    Robust Motion Planning employing Signal Temporal Logic

    Full text link
    Motion planning classically concerns the problem of accomplishing a goal configuration while avoiding obstacles. However, the need for more sophisticated motion planning methodologies, taking temporal aspects into account, has emerged. To address this issue, temporal logics have recently been used to formulate such advanced specifications. This paper will consider Signal Temporal Logic in combination with Model Predictive Control. A robustness metric, called Discrete Average Space Robustness, is introduced and used to maximize the satisfaction of specifications which results in a natural robustness against noise. The comprised optimization problem is convex and formulated as a Linear Program.Comment: 6 page

    Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints

    Full text link
    We consider synthesis of control policies that maximize the probability of satisfying given temporal logic specifications in unknown, stochastic environments. We model the interaction between the system and its environment as a Markov decision process (MDP) with initially unknown transition probabilities. The solution we develop builds on the so-called model-based probably approximately correct Markov decision process (PAC-MDP) methodology. The algorithm attains an ε\varepsilon-approximately optimal policy with probability 1−δ1-\delta using samples (i.e. observations), time and space that grow polynomially with the size of the MDP, the size of the automaton expressing the temporal logic specification, 1ε\frac{1}{\varepsilon}, 1δ\frac{1}{\delta} and a finite time horizon. In this approach, the system maintains a model of the initially unknown MDP, and constructs a product MDP based on its learned model and the specification automaton that expresses the temporal logic constraints. During execution, the policy is iteratively updated using observation of the transitions taken by the system. The iteration terminates in finitely many steps. With high probability, the resulting policy is such that, for any state, the difference between the probability of satisfying the specification under this policy and the optimal one is within a predefined bound.Comment: 9 pages, 5 figures, Accepted by 2014 Robotics: Science and Systems (RSS
    • …
    corecore