189 research outputs found

    Hopping, Landing, and Balancing with Springs

    Get PDF
    This work investigates the interaction of a planar double pendulum robot and springs, where the lower body (the leg) has been modified to include a spring-loaded passive prismatic joint. The thesis explores the mechanical advantage of adding a spring to the robot in hopping, landing, and balancing activities by formulating the motion problem as a boundary value problem; and also provides a control strategy for such scenarios. It also analyses the robustness of the developed controller to uncertain spring parameters, and an observer solution is provided to estimate these parameters while the robot is performing a tracking task. Finally, it shows a study of how well IMUs perform in bouncing conditions, which is critical for the proper operation of a hopping robot or a running-legged one

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Graceful transitions between periodic motions for nonlinear and hybrid systems

    Get PDF
    The objective of this dissertation is to provide a set of methods by which a graceful transition is synthesised for a large class of nonlinear and hybrid systems. A special focus of this thesis is on transitioning between periodic orbits. The primary motivation for this is in the application to legged locomotion. The Gluskabi Raccordation provides a general framework to accomplish this. In this thesis, we utilize the Gluskabi raccordation as a general framework for encapsulating the abstract notion of gracefulness. We extend the kernel method to a certain class of hybrid systems. We show how to construct a carefully formulated optimization problem, the solution of which yields graceful transitions. This is illustrated on hopping systems on elastic and granular terrain. The image method, which is dual to the kernel method, is also used as an alternative method to realize graceful transitions. This involves the careful formulation of a parameterized optimal control problem, the solution of which yields parameterized periodic orbits. A dynamically feasible trajectory is then constructed staying close to this orbit family, which yields a different notion of gracefulness. The method is illustrated on fully actuated and underactuated planar bipedal robots. Finally, energy efficient locomotion is also considered in the context of bipedal robots. The partial hybrid zero dynamics framework is employed to generate stable energy efficient periodic walking gaits. An optimal control problem is solved which generates energy efficient transitions between these stable periodic walking gaits.Ph.D

    Sample-based motion planning in high-dimensional and differentially-constrained systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 115-124).State of the art sample-based path planning algorithms, such as the Rapidly-exploring Random Tree (RRT), have proven to be effective in path planning for systems subject to complex kinematic and geometric constraints. The performance of these algorithms, however, degrade as the dimension of the system increases. Furthermore, sample-based planners rely on distance metrics which do not work well when the system has differential constraints. Such constraints are particularly challenging in systems with non-holonomic and underactuated dynamics. This thesis develops two intelligent sampling strategies to help guide the search process. To reduce sensitivity to dimension, sampling can be done in a low-dimensional task space rather than in the high-dimensional state space. Altering the sampling strategy in this way creates a Voronoi Bias in task space, which helps to guide the search, while the RRT continues to verify trajectory feasibility in the full state space. Fast path planning is demonstrated using this approach on a 1500-link manipulator. To enable task-space biasing for underactuated systems, a hierarchical task space controller is developed by utilizing partial feedback linearization. Another sampling strategy is also presented, where the local reachability of the tree is approximated, and used to bias the search, for systems subject to differential constraints. Reachability guidance is shown to improve search performance of the RRT by an order of magnitude when planning on a pendulum and non-holonomic car. The ideas of task-space biasing and reachability guidance are then combined for demonstration of a motion planning algorithm implemented on LittleDog, a quadruped robot. The motion planning algorithm successfully planned bounding trajectories over extremely rough terrain.by Alexander C. Shkolnik.Ph.D

    Dynamical systems : mechatronics and life sciences

    Get PDF
    Proceedings of the 13th Conference „Dynamical Systems - Theory and Applications" summarize 164 and the Springer Proceedings summarize 60 best papers of university teachers and students, researchers and engineers from whole the world. The papers were chosen by the International Scientific Committee from 315 papers submitted to the conference. The reader thus obtains an overview of the recent developments of dynamical systems and can study the most progressive tendencies in this field of science

    Applied optimal control for dynamically stable legged locomotion

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 79-84).Online learning and controller adaptation will be an essential component for legged robots in the next few years as they begin to leave the laboratory setting and join our world. I present the first example of a learning system which is able to quickly and reliably acquire a robust feedback control policy for 3D dynamic bipedal walking from a blank slate using only trials implemented on the physical robot. The robot begins walking within a minute and learning converges in approximately 20 minutes. The learning works quickly enough that the robot is able to continually adapt to the terrain as it walks. This success can be attributed in part to the mechanics of our robot, which is capable of stable walking down a small ramp even when the computer is turned off. In this thesis, I analyze the dynamics of passive dynamic walking, starting with reduced planar models and working up to experiments on our real robot. I describe, in detail, the actor-critic reinforcement learning algorithm that is implemented on the return map dynamics of the biped. Finally, I address issues of scaling and controller augmentation using tools from optimal control theory and a simulation of a planar one-leg hopping robot. These learning results provide a starting point for the production of robust and energy efficient walking and running robots that work well initially, and continue to improve with experience.by Russell L. Tedrake.Ph.D

    Low frequency noise suppression for the development of gravitational astronomy

    Get PDF
    The existence of gravitational radiation, predicted by the General Relativity theory, was indirectly demonstrated by the observation of the orbital decay in the binary pulsar 1913+16, for which R.A. Hulse and J.H. Taylor were awarded with the Nobel Prize in 1993. From then on, the direct detection of gravitational waves became a main issue in the experimental physics, not only for the verification of the theory itself but, most important, because it can open a new "observation window" of the universe. In fact, many astronomical objects, such as neutron stars and black holes, can be directly studied only through their gravitational emission. Moreover, since its interaction with matter is intrinsically weak, the degradation of informations carried by gravitational waves is negligible, and their revelation will allow us to understand the internal structure of massive objects which emit them, and will also provide a complementary point of view to the traditional astronomy and cosmology. The direct detection must face the extreme weakness of gravitational radiation, hence very high sensitive detectors are required in order to reveal the quadrupolar effect produced by the passage of gravitational waves. The first attempts in this field were based on massive resonant bars, relying on the pioneering technique developed by J. Weber. In recent decades a more promising strategy based on interferometry was developed, providing the advantage of a wide-frequency detection-band (from few Hz to some kHz) jointly to an extreme sensitivity (the detectable strain is smaller than the size of a proton). The global network of first generation interferometric detectors, composed of Virgo, LIGO, GEO600 and TAMA300, demonstrated the feasibility of such a technique; in particular the kilometric-scale detectors Virgo and LIGO achieved a sensitivity high enough to determine the first upper limits for the gravitational emission of some known neutron stars, such as the Crab and Vela pulsars. In the next few years the upgraded version of these detectors, namely the second generation of detectors (such as Advanced Virgo and Advanced LIGO) will become operational and are expected to achieve the first direct detections of gravitational waves. However, the signal-to-noise ratio (SNR) of these first detections will be too low for precise astronomical studies of the gravitational wave sources and for complementing optical, radio and X-ray observations in the study of fundamental systems and processes in the Universe. For this reason the investigation on the design of a new, namely third, generation of detectors is already started, leading to the proposal of the European Einstein Telescope (ET). With a considerably improved sensitivity these new machines will open the era of routine gravitational wave astronomy, leading to the birth of a complete multimessenger astronomy. In particular, to enlarge the detector bandwidth in the range of 1 Hz, where interesting gravitational signals, such as those emitted by rotating neutron stars, can be detected, a further reduction of the so-called low-frequency noise, with respect to the second generation detectors, is required. In this low-frequency band the main limitation to the sensitivity of an interferometric detector arises from the thermal noise, and at lower frequencies, from the seismic and Newtonian noises. The suppression of the thermal noise will require the implementation of a cryogenic apparatus, in order to cool the test masses down to about 10 K, so that the development of position-control devices capable of cryogenic operations will be also necessary for the suspension and payload control. The seismic attenuation was already obtained in first generation detectors by means of long suspension chains of vertical and horizontal oscillators (e.g. the superattenuator of Virgo), so that a further reduction requires a smaller seismic noise at the input of the suspension system; moreover, mass density fluctuations produced by the seismic motion induce also a stochastic gravitational field (the so-called Newtonian or gravity-gradient noise) which shunts the suspension and couples directly to the mirrors of the interferometer. In order to suppress these two seismically-generated noises, third generation interferometers will be constructed in underground sites, where Rayleigh surface waves are attenuated, and the surrounding rock layers are more homogeneous and stable, reducing the density fluctuations. The feasibility of a cryogenic and underground interferometer was already tested by the Japanese prototype-detector CLIO, in the same site where is currently under construction KAGRA (formerly known as LGCT), the first full-scale interferometric detector based on these approaches. For these aspects, this second generation detector will be the forerunner of third generation interferometers such as ET, therefore a collaboration between the two scientific collaborations has been established. My experimental work is focused on the suppression of these low noise sources, so that this thesis is structured in two parallel fields of research: the seismic characterization of a potential site for the construction of the Einstein Telescope, and the development, calibration and test of a cryogenic vertical accelerometer, which can be used as a position control device, analogously to those used in the actual room-temperature superattenuator of Virgo, but also to check the vibrations introduced by the cryogenic apparatus, as I did with the measurements I performed on the cryostats of KAGRA, presented at the end of this thesis. The scheme of this thesis is subdivided in three main parts: in the first part I introduce the foundations of the gravitational astronomy, from the theory and the astrophysical sources to the experiments which will lead to the gravitational observations; in the second part I discuss the theory of low frequency noise sources and their suppression; in the third part I present the experimental work I performed in this context. Every part is composed of two chapters, structured as follows. In the first chapter I describe the derivation of gravitational waves from the Einstein's field equations, discussing their properties and the astrophysical and cosmological sources, especially those whose emission is expected at low frequencies. In the second chapter I describe the direct interferometric detection of gravitational waves and the main noise sources which limit the sensitivity, concluding with an overview of present and future detectors. In the third chapter I discuss the main features of the seismic and Newtonian noises, and the strategies necessary to suppress them, especially in third generation detectors. In the fourth chapter I discuss the theory of thermal noise, from the ideal case of the damped harmonic oscillator to the real dissipative mechanical systems and optical components of the interferometer. In the fifth chapter I present my experimental work on the long-period characterization of the Sos Enattos site in Sardinia (proposed for hosting the Einstein Telescope), from the construction and instrumentation of an underground array of sensors to the analysis of seismic and meteorological data collected in one year of observations. Finally, in the sixth chapter I present my experimental work on the development of a cryogenic vertical accelerometer, from the designing to the cryogenic calibration and tests at T=20 K. In this chapter I also present the results of the implementation of this device into the cryostats dedicated to the test masses of KAGRA, where I verified the operations of the accelerometer at T=8 K and I measured the vibrations of the inner radiation shield of the cryostats. These measurements led to a first experimental estimate of the additional vibrational noise which will be injected by the cryogenic refrigerators to the detector test masses
    corecore