2,507 research outputs found

    Full Stability In Optimization

    Get PDF
    The dissertation concerns a systematic study of full stability in general optimization models including its conventional Lipschitzian version as well as the new Holderian one. We derive various characterizations of both Lipschitzian and Holderian full stability in nonsmooth optimization, which are new in finite-dimensional and infinite-dimensional frameworks. The characterizations obtained are given in terms of second-order growth conditions and also via second-order generalized differential constructions of variational analysis. We develop effective applications of our general characterizations of full stability to parametric variational systems including the well-known generalized equations and variational inequalities. Many relationships of full stability with the conventional notions of strong regularity and strong stability are established for a large class of problems of constrained optimization with twice continuously differentiable data. Other applications of full stability to nonlinear programming, to semidefinite programming, and to optimal control problems governed by semilinear elliptic PDEs are also studied

    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty.

    Get PDF
    We use in this chapter the viability/capturability approach for studying the problem of dynamic valuation and management of a portfolio with transaction costs in the framework of tychastic control systems (or dynamical games against nature) instead of stochastic control systems. Indeed, the very definition of the guaranteed valuation set can be formulated directly in terms of guaranteed viable-capture basin of a dynamical game. Hence, we shall “compute” the guaranteed viable-capture basin and find a formula for the valuation function involving an underlying criterion, use the tangential properties of such basins for proving that the valuation function is a solution to Hamilton-Jacobi-Isaacs partial differential equations. We then derive a dynamical feedback providing an adjustment law regulating the evolution of the portfolios obeying viability constraints until it achieves the given objective in finite time. We shall show that the Pujal—Saint-Pierre viability/capturability algorithm applied to this specific case provides both the valuation function and the associated portfolios.dynamic games; dynamic valuation; tychastic control systems; management of portfolio;
    • …
    corecore