15,518 research outputs found

    Optimal Control of the Thermistor Problem in Three Spatial Dimensions

    Get PDF
    This paper is concerned with the state-constrained optimal control of the three-dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Local existence, uniqueness and continuity for the state system are derived by employing maximal parabolic regularity in the fundamental theorem of Pr\"uss. Global solutions are addressed, which includes analysis of the linearized state system via maximal parabolic regularity, and existence of optimal controls is shown if the temperature gradient is under control. The adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem in form of a qualified optimality system. The theoretical findings are illustrated by numerical results

    Optimal Control of Convective FitzHugh-Nagumo Equation

    Get PDF
    We investigate smooth and sparse optimal control problems for convective FitzHugh-Nagumo equation with travelling wave solutions in moving excitable media. The cost function includes distributed space-time and terminal observations or targets. The state and adjoint equations are discretized in space by symmetric interior point Galerkin (SIPG) method and by backward Euler method in time. Several numerical results are presented for the control of the travelling waves. We also show numerically the validity of the second order optimality conditions for the local solutions of the sparse optimal control problem for vanishing Tikhonov regularization parameter. Further, we estimate the distance between the discrete control and associated local optima numerically by the help of the perturbation method and the smallest eigenvalue of the reduced Hessian

    Guidance analysis of the aeroglide plane change maneuver as a turning point problem

    Get PDF
    The development of guidance approximations for the atmospheric (aeroglide) portion of the minimum fuel, orbital plane change, trajectory optimization problem is described. Asymptotic methods are used to reduce the two point, boundary value, optimization problem to a turning point problem from the bank angle control. The turning point problem solution, which yields an approximate optimal control policy, is given in terms of parabolic cylinder functions, which are tabulated, and integral expressions, which must be numerically computed. Comparisons of the former, over their region of validity, with optimal control solutions show good qualitative agreement. Additional work and analysis is needed to compute the guidance approximation work

    Equilibrium points for Optimal Investment with Vintage Capital

    Full text link
    The paper concerns the study of equilibrium points, namely the stationary solutions to the closed loop equation, of an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. Sufficient conditions for existence of equilibrium points in the general case are given and later applied to the economic problem of optimal investment with vintage capital. Explicit computation of equilibria for the economic problem in some relevant examples is also provided. Indeed the challenging issue here is showing that a theoretical machinery, such as optimal control in infinite dimension, may be effectively used to compute solutions explicitly and easily, and that the same computation may be straightforwardly repeated in examples yielding the same abstract structure. No stability result is instead provided: the work here contained has to be considered as a first step in the direction of studying the behavior of optimal controls and trajectories in the long run
    corecore