223 research outputs found

    Full-Bridge Modular Multilevel Converter for the Four-Quadrant Supply of High Power Magnets in Particle Accelerators

    Get PDF
    Ponencia presentada en 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 5-9 September 2022, Hanover, Germany.Many particle accelerators require to supply chains of magnets with high quality, high magnitude, cycling currents. To do this, the power converters need to provide high output voltages, reaching in some cases tens of kilovolts. Additionally, converters are required to store the magnet energy during de-magnitasion cycles. For such application, Full-bridge Modular Multilevel Converters (FB-MMC) could be used given their capacity to store energy, their inherent reliability and their good harmonic performance. This paper studies how this converter topology could be used for this application, proposing a method to recover and store the energy of the magnet using the converter submodules

    Design of a Modular Multilevel Converter with 400 kWh of Integrated Batteries

    Get PDF
    In this paper the electromechanical design and the cascaded signal processing platform of a modular multilevel converter with integrated, second-life battery modules are presented. With its 120 full-bridge submodules, the prototype is designed for a maximum in- and output power of 100 kW and to store up to 400 kWh

    Dual harmonic injection for reducing the sub-module capacitor voltage ripples of hybrid MMC

    Get PDF
    Reducing the capacitor voltage ripples of the half-bridge sub-modules (HBSM) and full-bridge sub-modules (FBSM) in a hybrid modular multilevel converter (MMC) is expected to reduce the capacitance, volume and costs. To address this issue, this paper proposes a dual harmonic injection method which injects the second harmonic circulating current and third order harmonic voltage into the conventional MMC control. Firstly, the mathematical model of the proposed control is established and analyzed. Then, the general strategy of determining the amplitude and phase angle of each injection component is proposed to suppress the fluctuations of the fundamental and double frequency instantaneous power. The proposed strategy can achieve the optimal power fluctuation suppression under various operating conditions, which also has the advantage of reducing the voltage fluctuation difference between HB and FB SMs. The correctness and effectiveness of the proposed strategy are verified in simulations in PSCAD/EMTDC

    Mission Profile Based Control and Reliability Improvement Strategies of Modular Multilevel Converters

    Get PDF

    Modular Multilevel Converters for Medium Voltage Applications: Low Switching Frequency Modulation Strategies and Circulating Current Control Techniques.

    Get PDF
    233 p.El objetivo de la presente tesis ha sido el aumento de la eficiencia y la mejora del funcionamiento de convertidores multinivel modulares (MMCs) en aplicaciones de media tensión (drives, STATCOMs, redes de media tensión en DC o colectores de energía en parques eólicos). Para ello se ha propuesto la utilización de una modulación de baja frecuencia de conmutación como la Eliminación Selectiva de Armónicos (SHE-PWM). De esta forma se reducen las pérdidas de conmutación significativamente. Las contribuciones de la tesis son:- Nueva formulación para implementar SHE-PWM: Esta nueva formulación, a diferencia de las existentes, proporciona un sistema único de ecuaciones que es válido para cualquier forma de onda. De esta forma, es posible buscar los ángulos de disparo y los patrones de conmutación, que resuelven el problema de SHE-PWM, sin necesidad de predefinir ninguna forma de onda. Por lo tanto, la búsqueda de ángulos de disparo se simplifica significativamente y se puede encontrar un alto número de soluciones diferentes, pudiendo optimizar el diseño de la forma de onda. Además, esta formulación es válida con simetrías de cuarto de onda y de media onda.- Controles de la corriente circulante en MMCs cuando se utiliza SHE-PWM: estos controles, a diferencia de los existentes, no distorsionan la tensión de fase de salida cuando se utiliza SHE-PWM y permiten mantener equilibradas las tensiones de los condensadores de los sub-módulos del MMC, además de reducir rizado de la corriente circulante. En concreto, se han propuesto dos controles, uno con (N+1) SHE-PWM y otro con (2N+1) SHE-PWM

    Computational-Efficient Thermal Estimation for IGBT Modules under Periodic Power Loss Profiles in Modular Multilevel Converters

    Get PDF

    Modular Multilevel Converters for Medium Voltage Applications: Low Switching Frequency Modulation Strategies and Circulating Current Control Techniques.

    Get PDF
    233 p.El objetivo de la presente tesis ha sido el aumento de la eficiencia y la mejora del funcionamiento de convertidores multinivel modulares (MMCs) en aplicaciones de media tensión (drives, STATCOMs, redes de media tensión en DC o colectores de energía en parques eólicos). Para ello se ha propuesto la utilización de una modulación de baja frecuencia de conmutación como la Eliminación Selectiva de Armónicos (SHE-PWM). De esta forma se reducen las pérdidas de conmutación significativamente. Las contribuciones de la tesis son:- Nueva formulación para implementar SHE-PWM: Esta nueva formulación, a diferencia de las existentes, proporciona un sistema único de ecuaciones que es válido para cualquier forma de onda. De esta forma, es posible buscar los ángulos de disparo y los patrones de conmutación, que resuelven el problema de SHE-PWM, sin necesidad de predefinir ninguna forma de onda. Por lo tanto, la búsqueda de ángulos de disparo se simplifica significativamente y se puede encontrar un alto número de soluciones diferentes, pudiendo optimizar el diseño de la forma de onda. Además, esta formulación es válida con simetrías de cuarto de onda y de media onda.- Controles de la corriente circulante en MMCs cuando se utiliza SHE-PWM: estos controles, a diferencia de los existentes, no distorsionan la tensión de fase de salida cuando se utiliza SHE-PWM y permiten mantener equilibradas las tensiones de los condensadores de los sub-módulos del MMC, además de reducir rizado de la corriente circulante. En concreto, se han propuesto dos controles, uno con (N+1) SHE-PWM y otro con (2N+1) SHE-PWM

    Control of modular multilevel converters in high voltage direct current power systems

    Get PDF
    This thesis focuses on a comprehensive analysis of Modular Multilevel Converters (MMC) in High Voltage Direct Current (HVDC) applications from the viewpoint of presenting new mathematical dynamic models and designing novel control strategies. In the first step, two new mathematical dynamic models using differential flatness theory (DFT) and circulating currents components are introduced. Moreover, detailed step-by-step analysis-based relationships are achieved for accurate control of MMCs in both inverter and rectifier operating modes. After presenting these new mathematical equations-based descriptions of MMCs, suitable control techniques are designed in the next step. Because of the nonlinearity features of MMCs, two nonlinear control strategies based on direct Lyapunov method (DLM) and passivity theory-based controller combined with sliding mode surface are designed by the use of circulating currents componentsbased dynamic model to provide a stable operation of MMCs in HVDC applications under various operating conditions. The negative effects of the input disturbance, model errors and system uncertainties are suppressed by defining a Lyapunov control function to reach the integralproportional terms of the flat output errors that should be finally added to the initial inputs. Simulation results in MATLAB/SIMULINK environment verify the positive effects of the proposed dynamic models and control strategies in all operating conditions of the MMCs in inverter mode, rectifier mode and HVDC applications.Esta tese visa proceder a uma análise abrangente de conversores multinível modulares (MMC) para transmissão a alta tensão em corrente contínua (HVDC), almejando apresentar novos modelos matemáticos em sistemas dinâmicos e projetar novas estratégias de controlo. Na primeira etapa são introduzidos dois novos modelos matemáticos dinâmicos que usam differential flatness theory e as componentes de correntes circulantes. Ainda, é estabelecida uma modelação matemática para o controlo preciso dos MMCs, operando em modo inversor ou modo retificador. Depois de apresentar as novas equações matemáticas, as técnicas de controlo mais adequadas são delineadas. Devido às características não lineares dos MMCs, são projetadas duas estratégias de controlo não-lineares baseadas no método direto de Lyapunov e no controlo do tipo passivity theory-based combinado com controlo por modo de deslizamento através do uso de modelos dinâmicos baseados em correntes circulantes para fornecer uma operação estável aos MMCs em aplicações de HVDC sob várias condições de operação. Os efeitos negativos das perturbações de entrada, erros de modelação e incertezas do sistema são suprimidos através da definição da função de controlo de Lyapunov para alcançar os termos de integraçãoproporcionalidade dos erros de saída para que possam finalmente ser adicionados às entradas iniciais. Os resultados da simulação computacional realizados em ambiente MATLAB/SIMULINK verificam os efeitos positivos dos modelos dinâmicos propostos e das novas estratégias de controlo em todas as condições de operação dos MMCs no modo inversor, retificador e em aplicações HVDC
    corecore