5,337 research outputs found

    Exact quantum dissipative dynamics under external time-dependent fields driving

    Full text link
    Exact and nonperturbative quantum master equation can be constructed via the calculus on path integral. It results in hierarchical equations of motion for the reduced density operator. Involved are also a set of well--defined auxiliary density operators that resolve not just system--bath coupling strength but also memory. In this work, we scale these auxiliary operators individually to achieve a uniform error tolerance, as set by the reduced density operator. An efficient propagator is then proposed to the hierarchical Liouville--space dynamics of quantum dissipation. Numerically exact studies are carried out on the dephasing effect on population transfer in the simple stimulated Raman adiabatic passage scheme. We also make assessments on several perturbative theories for their applicabilities in the present system of study

    A transformation method to study the solvability of fully coupled FBSDEs

    Get PDF
    We present a new method for checking global solvability of fully coupled forward-backward stochastic differential equations (FBSDEs), where all function parameters are Lipschitz continuous, the terminal condition is monotone and the diffusion coefficient of the forward part depends monotonically on z, the control process component of the backward part. We show that one can reduce, via a linear transformation, the FBSDE to an auxiliary FBSDE for which the Lipschitz constant of the forward diffusion coefficient w.r.t. z is smaller than the inverse of the Lipschitz constant of the terminal condition w.r.t. the forward component x. The latter condition allows to verify existence of a global solution by analyzing the space derivative of the decoupling field. We illustrate with several examples how the transformation method can be used for proving global solvability of FBSDEs
    • …
    corecore