803 research outputs found

    Tools for Optimization of Biomass-to-Energy Conversion Processes

    Get PDF
    Biomasses are renewable sources used in energy conversion processes to obtain diverse products through different technologies. The production chain, which involves delivery, logistics, pre-treatment, storage and conversion as general components, can be costly and uncertain due to inherent variability. Optimization methods are widely applied for modeling the biomass supply chain (BSC) for energy processes. In this qualitative review, the main aspects and global trends of using geographic information systems (GISs), linear programming (LP) and neural networks to optimize the BSC are presented. Modeling objectives and factors considered in studies published in the last 25 years are reviewed, enabling a broad overview of the BSC to support decisions at strategic, tactical and operational levels. Combined techniques have been used for different purposes: GISs for spatial analyses of biomass; neural networks for higher heating value (HHV) correlations; and linear programming and its variations for achieving objectives in general, such as costs and emissions reduction. This study reinforces the progress evidenced in the literature and envisions the increasing inclusion of socio-environmental criteria as a challenge in future modeling efforts

    A Real-time Rolling Horizon Chance Constrained Optimization Model for Energy Hub Scheduling

    Get PDF
    With the increasing consumption of energy, it is of high significance to improve energy efficiency and realize optimal operation of the multi-energy system. Among the many energy system modeling methods, the concept of “energy hub (EH)” is an emerging one. However, the previous EH models only included one or a few of constituting components. The construction of an energy hub model that integrates energy storage systems, photovoltaic (PV) components, a combined cooling heating and power (CCHP) system and electric vehicles (EVs) is explained in this thesis. The inclusion of the CCHP system helps to meet the energy demand and improve the mismatch of heat-to-electric ratio between the energy hub and the load. Additionally, vehicle-to-grid (V2G) technology is applied in this EH; that is, EVs are regarded not only as load demands but also as power suppliers. The energy hub optimization scheduling problem is formulated as a multi-period stochastic problem with the minimum total energy cost as the objective. Compared to 24-hour day-ahead scheduling, rolling horizon optimization is used in the EH scheduling and shows its superiority. In real-time rolling horizon scheduling, the optimization principle ensured that the result is optimized each moment, so it avoids energy waste caused by overbuying energy. As part of electricity loads, EVs have certain influence on energy hub scheduling. However, due to the randomness of the driving patterns, it is still very difficult to perfectly predict the driving consumption and the charging availability of the EVs one day in advance. Chance constrained programming can hedge the risk of uncertainty for a big probability and drop the extreme case with a very low probability. By restricting the probability of chance constraints over a specific level, the influence of the uncertainty of electric vehicle charging behavior on energy hub scheduling can be reduced. Simulation results show that the energy hub optimization scheduling with chance constrained programming results in a less energy cost and it can make better use of time-varying PV energy as well as the peak-to-valley electricity price

    A Real-Time Rolling Horizon Chance Constrained Optimization Model for Energy Hub Scheduling

    Get PDF
    With the increasing consumption of energy, it is of high significance to improve energy efficiency and realize optimal operation of the multi-energy system. Among the many energy system modeling methods, the concept of “energy hub (EH)” is an emerging one. However, the previous EH models only included one or a few of constituting components. The construction of an energy hub model that integrates energy storage systems, photovoltaic (PV) components, a combined cooling heating and power (CCHP) system and electric vehicles (EVs) is explained in this thesis. The inclusion of the CCHP system helps to meet the energy demand and improve the mismatch of heat-to-electric ratio between the energy hub and the load. Additionally, vehicle-to-grid (V2G) technology is applied in this EH; that is, EVs are regarded not only as load demands but also as power suppliers. The energy hub optimization scheduling problem is formulated as a multi-period stochastic problem with the minimum total energy cost as the objective. Compared to 24-hour day-ahead scheduling, rolling horizon optimization is used in the EH scheduling and shows its superiority. In real-time rolling horizon scheduling, the optimization principle ensured that the result is optimized each moment, so it avoids energy waste caused by overbuying energy. As part of electricity loads, EVs have certain influence on energy hub scheduling. However, due to the randomness of the driving patterns, it is still very difficult to perfectly predict the driving consumption and the charging availability of the EVs one day in advance. Chance constrained programming can hedge the risk of uncertainty for a big probability and drop the extreme case with a very low probability. By restricting the probability of chance constraints over a specific level, the influence of the uncertainty of electric vehicle charging behavior on energy hub scheduling can be reduced. Simulation results show that the energy hub optimization scheduling with chance constrained programming results in a less energy cost and it can make better use of time-varying PV energy as well as the peak-to-valley electricity price

    Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks

    Get PDF
    This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions.Este trabalho faz parte do desenvolvimento de um modelo de apoio à decisão para a operação de um gerador de vapor real. O estudo propõe uma otimização combinada que visa encontrar pontos de operação que atinjam a maior eficiência do gerador de vapor associada à menor emissão de NOx, aplicando algoritmo genético na saída de modelos de redes neurais artificiais (RNA). A base de dados é formada por 10 parâmetros de operação coletados durante um ano e meio com passo de meia hora e tratados estatisticamente. O comportamento do gerador de vapor é modelado por redes neurais artificiais Perceptron de várias camadas, com saídas separadas para eficiência e emissão de NOx. As métricas de avaliação empregadas nas RNAs foram o erro médio absoluto (MAE), erro quadrático médio (MSE), erro médio percentual (MAPE) e coeficiente de determinação (R2). A RNA para predizer o comportamento da eficiência apresenta MSE e MAE do seu teste de 0,7572 e 0,6206, respectivamente e a RNA para NOx apresenta MSE e MAE do seu teste de 312,43 e 12,36. A otimização tem como alvo atingir 98% de eficiência do gerador de vapor e 220,00 mg/mN³ de emissões de NOx, e se aproxima dessas metas com 97,95% de eficiência e 222,28 mg/mN³ de emissões de NOx

    Applications of Computational Intelligence to Power Systems

    Get PDF
    In power system operation and control, the basic goal is to provide users with quality electricity power in an economically rational degree for power systems, and to ensure their stability and reliability. However, the increased interconnection and loading of the power system along with deregulation and environmental concerns has brought new challenges for electric power system operation, control, and automation. In the liberalised electricity market, the operation and control of a power system has become a complex process because of the complexity in modelling and uncertainties. Computational intelligence (CI) is a family of modern tools for solving complex problems that are difficult to solve using conventional techniques, as these methods are based on several requirements that may not be true all of the time. Developing solutions with these “learning-based” tools offers the following two major advantages: the development time is much shorter than when using more traditional approaches, and the systems are very robust, being relatively insensitive to noisy and/or missing data/information, known as uncertainty

    Integration of different models in the design of chemical processes: Application to the design of a power plant

    Get PDF
    With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.Spanish Ministry of Science and Innovation (CTQ2012-37039-C02-02)

    Supervisory model predictive control of building integrated renewable and low carbon energy systems

    Get PDF
    To reduce fossil fuel consumption and carbon emission in the building sector, renewable and low carbon energy technologies are integrated in building energy systems to supply all or part of the building energy demand. In this research, an optimal supervisory controller is designed to optimize the operational cost and the CO2 emission of the integrated energy systems. For this purpose, the building energy system is defined and its boundary, components (subsystems), inputs and outputs are identified. Then a mathematical model of the components is obtained. For mathematical modelling of the energy system, a unified modelling method is used. With this method, many different building energy systems can be modelled uniformly. Two approaches are used; multi-period optimization and hybrid model predictive control. In both approaches the optimization problem is deterministic, so that at each time step the energy consumption of the building, and the available renewable energy are perfectly predicted for the prediction horizon. The controller is simulated in three different applications. In the first application the controller is used for a system consisting of a micro-combined heat and power system with an auxiliary boiler and a hot water storage tank. In this application the controller reduces the operational cost and CO2 emission by 7.31 percent and 5.19 percent respectively, with respect to the heat led operation. In the second application the controller is used to control a farm electrification system consisting of PV panels, a diesel generator and a battery bank. In this application the operational cost with respect to the common load following strategy is reduced by 3.8 percent. In the third application the controller is used to control a hybrid off-grid power system consisting of PV panels, a battery bank, an electrolyzer, a hydrogen storage tank and a fuel cell. In this application the controller maximizes the total stored energies in the battery bank and the hydrogen storage tank

    A decision support tool for building design: An integrated generative design, optimisation and life cycle performance approach

    Get PDF
    Building performance evaluation is generally carried out through a non-automated process, where computational models are iteratively built and simulated, and their energy demand is calculated. This study presents a computational tool that automates the generation of optimal building designs in respect of their Life Cycle Carbon Footprint (LCCF) and Life Cycle Costs (LCC). This is achieved by an integration of three computational concepts: (a) A designated space-allocation generative-design application, (b) Using building geometry as a parameter in NSGA-II optimization and (c) Life Cycle performance (embodied carbon and operational carbon, through the use of thermal simulations for LCCF and LCC calculation). Examining the generation of a two-storey terrace house building, located in London, UK, the study shows that a set of building parameters combinations that resulted with a pareto front of near-optimal buildings, in terms of LCCF and LCC, could be identified by using the tool. The study shows that 80% of the optimal building’s LCCF are related to the building operational stage (σ = 2), while 77% of the building’s LCC is related to the initial capital investment (σ = 2). Analysis further suggests that space heating is the largest contributor to the building’s emissions, while it has a relatively low impact on costs. Examining the optimal building in terms compliance requirements (the building with the best operational performance), the study demonstrated how this building performs poorly in terms of Life Cycle performance. The paper further presents an analysis of various life-cycle aspects, for example, a year-by-year performance breakdown, and an investigation into operational and embodied carbon emissions
    corecore