544 research outputs found

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    The cost of space independence in P300-BCI spellers.

    Get PDF
    Background: Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched extensively over the last two decades, most designs require control of spatial attention and/or gaze on the part of the user. Methods: In healthy adults, we compared the offline performance of a space-independent P300-based BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known space-dependent Matrix P300 speller. Results: EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the Matrix speller’s performance was significantly reliant on early, gaze-dependent Visual Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. However, there was a cost to true spatial independence: the RSVP speller was less efficient in terms of spelling speed. Conclusions: The advantage of space independence in the RSVP speller was concomitant with a marked reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, truly space-independent BCIs could approach efficiencies on par with the Matrix speller. With sufficiently high letter spelling rates fused with predictive language modelling, they would be viable for potential applications with patients unable to direct overt visual gaze or covert attentional focus

    An application of steady state visual evoked potential brain-computer interface as an augmentative alternative communication system for individuals with severe motor impairments

    Full text link
    Thesis (M.S.)--Boston UniversityPURPOSE: Tbis study will look at the feasibility of Steady State Visually Evoked Potential (SSVEP) brain-computer interfaces (BCI) as possible augmentative and alternative communication (AAC) systems for individuals who are severely disabled such as those with Locked-in Syndrome (LIS). The study intended to test whether there is a difference in BCI performance between healthy and impaired individuals and why. Specifically, the study focused on the operational competency, such as ocular motor function, ofthe impaired individuals as it relates to performance. Further, the study also attempted to explore the contributions of environmental distracts to performance. The results oftbis investigation will provide insights valuable for future BCI-AAC development and the potential for their acceptance by the AAC and LIS communities. METHODS: The study consisted of 12 healthy adults and 5 severely disabled adults presenting with 4 different neurological disorders. Tbis study consisted to two parts. The first part was an assessment ofthe communicative abilities ofthe impaired subjects. The assessment was conducted through a video recorded interview, from which communication rates were calculated and behavioral observations of each impaired subject's communicative behaviors were made with a focus on ocular motor behavior. The second part involved testing of the SSVEP BCI. All subjects performed selection tasks from a choice of four directions in the UDLR task. For each trial, the subject was prompted to attend to a specific SSVEP stimulus. Each stimulus was selected at random to flash at one of four frequencies (12, 13, 14, or 15Hz) (Lorenz, 2012). After 4 seconds, the BCI predicted the attended cue direction (Up, Down, Left, Right). If the prediction was correct, a "thumbs-up" feedback signal was shown to the subject; a "thumbs-down" was shown for incorrect predictions. The UDLR data collected for each trial consisted of a table with two columns: one column recorded the ground truth, which was the target direction, and one column recorded the decoded, or classified direction. Two additional columns were added. One column indicated whether the subject had any ocular motor impairment with a 1 or 0. A binary logistic regression was completed to investigate the main effect of age, subject group, and ocular motor impairment with respect to BCI accuracy. Additionally, observations regarding the affect of environmental distractions were also made. [TRUNCATED

    The Hybrid BCI

    Get PDF
    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system

    Examining sensory ability, feature matching, and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Disability and Rehabilitation: Assistive Technology on 01/31/2018, available online: http://www.tandfonline.com/10.1080/17483107.2018.1428369.PURPOSE:We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. METHODS: Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. RESULTS: All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. CONCLUSION: As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes

    Enhancement of SSVEPs Classification in BCI-based Wearable Instrumentation Through Machine Learning Techniques

    Get PDF
    This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady-State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies provide a significant enhancement of the SSVEP classification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-σ reproducibility: this, in turn, anticipates an easier development of ready-to-use systems

    An Unsupervised Channel Selection Method for SSVEP-based Brain Computer Interfaces

    Get PDF
    Brain-computer interfaces (BCIs) provide an alternative communication channel for people with motor deficits that prevent normal communication. The underlying premise of a BCI is that a neuroimaging process such as electroencephalography (EEG) can be used to measure the user’s brain activity as signals. The obtained signals are analyzed to determine the user’s intended actions and a computer system can be used to replace voluntary muscle activity as a means of communication. The information transfer rate (ITR) of an algorithm used for determining the user’s intentions greatly affects the perceived practicality of the BCI system. Such algorithms are divided into two main categories, supervised and unsupervised. While the former achieves higher ITR, the latter is most useful when the user is unable to be involved in the calibration process of the BCI system. In our paper, we introduce an unsupervised algorithm for steady-state visual evoked potential (SSVEP)-based BCIs. Our algorithm works in three steps: (i) it selects multiple sets of electroencephalogram channels, then (ii) applies a feature extraction method to each one of these channel sets. As its final step, (iii) it combines the extracted features from these channel sets by performing a majority vote, yielding a classification. We evaluate the ITR attained using our proposed method on a dataset of 35 subjects using three different feature extraction methods. We then compare these results to existing methods in the literature that use a single channel set without a majority vote. The proposed method indicates an improvement for at least 7 subjects

    Decoding steady-state visual evoked potentials from electrocorticography

    Get PDF
    We report on a unique electrocorticography (ECoG) experiment in which Steady-State Visual Evoked Potentials (SSVEPs) to frequency-and phase-tagged stimuli were recorded from a large subdural grid covering the entire right occipital cortex of a human subject. The paradigm is popular in EEG-based Brain Computer Interfacing where selectable targets are encoded by different frequency-and/or phase-tagged stimuli. We compare the performance of two state-of-the-art SSVEP decoders on both ECoG-and scalp-recorded EEG signals, and show that ECoG-based decoding is more accurate for very short stimulation lengths (i.e., less than 1 s). Furthermore, whereas the accuracy of scalp-EEG decoding bene fi ts from a multi-electrode approach, to address interfering EEG responses and noise, ECoG decoding enjoys only a marginal improvement as even a single electrode, placed over the posterior part of the primary visual cortex, seems to suf fi ce. This study shows, for the fi rst time, that EEG-based SSVEP decoders can in principle be applied to ECoG, and can be expected to yield faster decoding speeds using less electrodes

    Practical Brain Computer Interfacing

    Get PDF
    A brain-computer interface (BCI) is a communication system that enables users to voluntary send messages or commands without movement. The classical goal of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of computer cursors, spelling programs or external devices, such as wheelchairs, robots and neural prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user's brain and translates them into suitable communication. This dissertation aims to develop faster and more reliable non-invasive BCI communication based on the study of users learning process and their interaction with the BCI transducer. To date, BCI research has focused on the development of advanced pattern recognition and classification algorithms to improve accuracy and reliability of the classified patterns. However, even with optimal detection methods, successful BCI operation depends on the degree to which the users can voluntary modulate their brain signals. Therefore, learning to operate a BCI requires repeated practice with feedback that engages learning mechanisms in the brain. In this work, several aspects including signal processing techniques, feedback methods, experimental and training protocols, demographics, and applications were explored and investigated. Research was focused on two BCI paradigms, steady-state visual evoked potentials (SSVEP) and event-related (de-)synchronization (ERD/ERS). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. A general application interface for BCI feedback tasks was developed to evaluate the practicability, reliability and acceptance of new feedback methods. The role of feedback and training was fully investigated on studies conducted with healthy subjects. The influence of demographics on BCIs was explored in two field studies with a large number of subjects. Results were supported through advanced statistical analysis. Furthermore, the BCI control was evaluated in a spelling application and a service robotic application. This dissertation demonstrates that BCIs can provide effective communication for most subjects. Presented results showed that improvements in the BCI transducer, training protocols, and feedback methods constituted the basis to achieve faster and more reliable BCI communication. Nevertheless, expert assistance is necessary for both initial configuration and daily operation, which reduces the practicability of BCIs for people who really need them
    • 

    corecore