362 research outputs found

    Modelling colour properties for textiles

    Get PDF

    N-colour separation methods for accurate reproduction of spot colours

    Full text link
    In packaging, spot colours are used to print key information like brand logos and elements for which the colour accuracy is critical. The present study investigates methods to aid the accurate reproduction of these spot colours with the n-colour printing process. Typical n-colour printing systems consist of supplementary inks in addition to the usual CMYK inks. Adding these inks to the traditional CMYK set increases the attainable colour gamut, but the added complexity creates several challenges in generating suitable colour separations for rendering colour images. In this project, the n-colour separation is achieved by the use of additional sectors for intermediate inks. Each sector contains four inks with the achromatic ink (black) common to all sectors. This allows the extension of the principles of the CMYK printing process to these additional sectors. The methods developed in this study can be generalised to any number of inks. The project explores various aspects of the n-colour printing process including the forward characterisation methods, gamut prediction of the n-colour process and the inverse characterisation to calculate the n-colour separation for target spot colours. The scope of the study covers different printing technologies including lithographic offset, flexographic, thermal sublimation and inkjet printing. A new method is proposed to characterise the printing devices. This method, the spot colour overprint (SCOP) model, was evaluated for the n-colour printing process with different printing technologies. In addition, a set of real-world spot colours were converted to n-colour separations and printed with the 7-colour printing process to evaluate against the original spot colours. The results show that the proposed methods can be effectively used to replace the spot coloured inks with the n-colour printing process. This can save significant material, time and costs in the packaging industry

    Prototype software for colorant formulation using Gamblin conservation colors

    Get PDF
    When selecting pigments from a large set for restorative inpainting, it can often be challenging to create a mixture that will provide an exact match to the original artwork under a range of viewing and illumination conditions. In this research, a prototype computer program was developed that will aid the user by providing a color match and paint recipe that exhibits minimal metamerism when compared to the original artwork. The Gamblin Conservation Colors, a set of 43 colorants specially formulated for inpainting, were characterized in terms of their optical properties, absorption and scattering, according to Kubelka-Munk turbid media theory. Formulations were made using traditional spectrophotometric measurements and image-based measurements. The multispectral imaging system consisted of a trichromatic CFA camera coupled with two absorption filters; spectral reflectance data for each pixel location was estimated with a transformation based on calibration target images. Three targets were used for testing formulation accuracy: a target consisting of mixtures of Gamblin Conservation Colors, and two oil paintings. Pigment selection was reasonably successful, and good predictions resulted from both measurement techniques, but for more complex tasks such as pigment identification, a more rigorous colorant characterization approach may be needed. Predictions from image-based measurements were generally less accurate, and improvements in the camera model would likely remedy this. It is expected that this software will be of assistance to conservators by simplifying the process of selecting from a large set of available pigments, as well as reducing the possibility of damage to painted surfaces in cases where direct measurements are impractical. The open source nature of the software provides the opportunity for changes and addition of features in the future

    Spectral print reproduction modeling and feasibility

    Get PDF

    Exploring the color inconstancy of prints

    Get PDF
    The color inconstancy of prints is related to the ink spectral properties and the lookup table for multiink printing systems. In this paper, color inconstancy was investigated for several ink-jet printers based on their ink set and the default lookup tables. A virtual model for each printer was created to determine the range of color inconstancy that a specific ink set could achieve. The color inconstancy performance of each default lookup table was evaluated by evaluating the color inconstancy of a printed test target. The optimum combinations of three- and four-chromatic inks were investigated to minimize the color inconstancy and keep a relative large color gamut simultaneously. The results showed that the color inconstancy can be decreased significantly without compromising the reproduction colorimetric accuracy. Moreover the color inconstancy can be improved by appropriate ink design

    Spectral modeling of a six-color inkjet printer

    Get PDF
    After customizing an Epson Stylus Photo 1200 by adding a continuous-feed ink system and a cyan, magenta, yellow, black, orange and green ink set, a series of research tasks were carried out to build a full spectral model of the printers output. First, various forward printer models were tested using the fifteen two color combinations of the printer. Yule- Nielsen-spectral-Neugebauer (YNSN) was selected as the forward model and its accuracy tested throughout the colorant space. It was found to be highly accurate, performing as well as a more complex local, cellular version. Next, the performance of nonlinear optimization-routine algorithms were evaluated for their ability to efficiently invert the YNSN model. A quasi-Newton based algorithm designed by Davidon, Fletcher and Powell (DFP) was found to give the best performance when combined with starting values produced from the non-negative least squares fit of single-constant Kubelka- Munk. The accuracy of the inverse model was tested and different optimization objective functions were evaluated. A multistage objective function based on minimizing spectral RMS error and then colorimetric error was found to give highly accurate matches with low metameric potential. Finally, the relationship between the number of printing inks and the ability to eliminate metamerism was explored

    Developing a spectral and colorimetric database of artist paint materials

    Get PDF
    As the project of the author\u27s Master\u27s thesis, the development of a spectral and colorimetric database of artist paint materials for acrylic paints was started. The goal of this research project was to: - provide the academic resource of colorant spectral characteristics - give scientifc explanations on various paint-particular phenomena (paint mixing, gloss effects and color gamut expansion by varnishing) These tasks were planned to satisfy possible interests on paint research from not only conservators in museums but also color educators in schools and color reproduction engineers in imaging companies

    Characterisation of Implant Supported Soft Tissue Prostheses Produced with 3D Colour Printing Technology

    Get PDF
    The numbers of patients needing facial prostheses has increased in the last few decades due to improving cancer survival rates. The many limitations of the handmade prostheses together with rapid expansion of prototyping in all directions, particularly in producing human anatomically accurate parts, have raised the question of how to employ this technology for rapid manufacturing of facial soft tissue prostheses. The idea started to grow and the project was implemented based on CAD/CAM principles – additive manufacturing technology, by employing layered fabrication of facial prostheses from starch powder and a water based binder and infiltrated with a silicone polymer (SPIS). The project aimed to produce a facial prosthesis by using 3D colour printing, which would match the patient’s skin shade and have the desirable mechanical properties, through a relatively low cost process that would be accessible to the global patient community. This was achieved by providing a simple system for data capture, design and reproducible method of manufacture with a clinically acceptable material. The prosthesis produced has several advantages and few limitations when compared to existing products/prostheses made from silicone polymer (SP). The mechanical properties and durability were not as good as those of the SP made prosthesis but they were acceptable, although the ideal properties have yet to be identified. Colour reproduction and colour matching were more than acceptable, although the colour of the SPIS parts was less stable than the SP colour under natural and accelerated weathering conditions. However, it is acknowledged that neither of the two methods used represent the natural life use on patients and the deficiencies demonstrated in terms of mechanical properties and colour instability were partially inherent in the methodology used, as the project was still at the developmental stage and it was not possible to apply real life tests on patients. Moreover, deficiencies in mechanical and optical properties were probably caused by the starch present, which was used as a scaffold for the SP. Furthermore, a suitable retention system utilising existing components was designed and added to the prosthesis. This enabled the prosthesis to be retained by implants with no need for the addition of adhesive. This would also help to prolong the durability and life span of the prosthesis. The capability of the printer to produce skin shades was determined and it was found that all the skin colours measured fall within the range of the 3D colour printer and thereby the printer was able to produce all the colours required. Biocompatibility was also acceptable, with a very low rate of toxicity. However, no material is 100% safe and each material has a certain range of toxicity at certain concentrations. At this stage of the project, it can be confirmed that facial prostheses were successfully manufactured by using 3D colour printing to match the patient’s skin shade, using biocompatible materials and having the desirable mechanical properties. Furthermore, the technology used enabled prostheses to be produced in a shorter time frame and at a lower cost than conventional SP prostheses. They are also very lightweight, easier to use and possibly more comfortable for the patients. Moreover, this technology has the capability of producing multiple prostheses at the time of manufacture at reduced extra cost, whilst the data can be saved and can be utilised/modified for producing further copies in the future without having to going through all the steps involved with handmade prostheses. Based on the mechanical properties and colour measurements the prostheses will have a finite service life and the recommendation is that these prostheses will need replacing every 6 to 12 months, depending on how the patient handles and maintains the prostheses and whether the prosthesis is being used as an interim or definitive prosthesis. This was largely comparable to existing prostheses but without the time and cost implications for replacement. However, it is acknowledged that further investigations and clinical case studies are required to investigate the “real life” effect on the prostheses and to get feedback from the patients in order to make appropriate improvements to the mechanical properties and the durability of the prosthesis

    Color in computing

    Get PDF
    Color in the computing environment, once considered a luxury, is becoming more available compared to being just the occasional exception. As the number of users exploring the uses of color through displayed and printed images increases, the problems associated with its use are becoming widely known. What worked in black and white is not easily translated into color. The use of color needs to begin with the basic understanding of what is color, its terminology and its utilization as an enhancement to communications tool. Only after the basic terminology and effective means of communication are understood will color flourish as a successful means of communication in the computing environment. Currently, a number of products are seen as solutions in the realm of color usage in the computing environment. Four different contributions, PostScript Level 2 (Adobe), PhotoYCC(Eastman Kodak), Pantone Matching System (Pantone), and TekHVC (Tektronix), each deliver a component of electronic color reproduction. PostScript Level 2 delivers consistent color from monitor to printer, with variations based on printer manufacture and the printing technology utilized. PhotoYCC defines a format for image capture and retrieval with a wealth of possibilities for image sources. Pantone Matching System expands the accessibility of simulated prepress work, coupled with ink formulation and quality control. Tektronix attempted to define TekHVC as an industry standard based on a more uniform color space than that which is defined by previous industry standards. Because of the lack of acceptance, Tektronix has limited this solution to their printers. Solutions are abundant, but as costs continue to fall, the expectation of consistent color will rise. The adoption of standards across operating environments and software packages is critical to continued increase of the use of color in the computing environment
    corecore