319 research outputs found

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201

    Spectrum Sharing between Cooperative Relay and Ad-hoc Networks: Dynamic Transmissions under Computation and Signaling Limitations

    Full text link
    This paper studies a spectrum sharing scenario between a cooperative relay network (CRN) and a nearby ad-hoc network. In particular, we consider a dynamic spectrum access and resource allocation problem of the CRN. Based on sensing and predicting the ad-hoc transmission behaviors, the ergodic traffic collision time between the CRN and ad-hoc network is minimized subject to an ergodic uplink throughput requirement for the CRN. We focus on real-time implementation of spectrum sharing policy under practical computation and signaling limitations. In our spectrum sharing policy, most computation tasks are accomplished off-line. Hence, little real-time calculation is required which fits the requirement of practical applications. Moreover, the signaling procedure and computation process are designed carefully to reduce the time delay between spectrum sensing and data transmission, which is crucial for enhancing the accuracy of traffic prediction and improving the performance of interference mitigation. The benefits of spectrum sensing and cooperative relay techniques are demonstrated by our numerical experiments.Comment: 5 pages, 3 figures, to appear in IEEE International Conference on Communications (ICC 2011

    Multiuser cognitive access of continuous time Markov channels: Maximum throughput and effective bandwidth regions

    Full text link

    Opportunistic Spectrum Access via Periodic Channel Sensing

    Full text link

    Optimal Real-time Spectrum Sharing between Cooperative Relay and Ad-hoc Networks

    Full text link
    Optimization based spectrum sharing strategies have been widely studied. However, these strategies usually require a great amount of real-time computation and significant signaling delay, and thus are hard to be fulfilled in practical scenarios. This paper investigates optimal real-time spectrum sharing between a cooperative relay network (CRN) and a nearby ad-hoc network. Specifically, we optimize the spectrum access and resource allocation strategies of the CRN so that the average traffic collision time between the two networks can be minimized while maintaining a required throughput for the CRN. The development is first for a frame-level setting, and then is extended to an ergodic setting. For the latter setting, we propose an appealing optimal real-time spectrum sharing strategy via Lagrangian dual optimization. The proposed method only involves a small amount of real-time computation and negligible control delay, and thus is suitable for practical implementations. Simulation results are presented to demonstrate the efficiency of the proposed strategies.Comment: One typo in the caption of Figure 5 is correcte
    • …
    corecore