10,601 research outputs found

    A machine learning approach with verification of predictions and assisted supervision for a rule-based network intrusion detection system

    Get PDF
    Network security is a branch of network management in which network intrusion detection systems provide attack detection features by monitorization of traffic data. Rule-based misuse detection systems use a set of rules or signatures to detect attacks that exploit a particular vulnerability. These rules have to be handcoded by experts to properly identify vulnerabilities, which results in misuse detection systems having limited extensibility. This paper proposes a machine learning layer on top of a rule-based misuse detection system that provides automatic generation of detection rules, prediction verification and assisted classification of new data. Our system offers an overall good performance, while adding an heuristic and adaptive approach to existing rule-based misuse detection systems

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers

    Defect prediction with bad smells in code

    Get PDF
    Background: Defect prediction in software can be highly beneficial for development projects, when prediction is highly effective and defect-prone areas are predicted correctly. One of the key elements to gain effective software defect prediction is proper selection of metrics used for dataset preparation. Objective: The purpose of this research is to verify, whether code smells metrics, collected using Microsoft CodeAnalysis tool, added to basic metric set, can improve defect prediction in industrial software development project. Results: We verified, if dataset extension by the code smells sourced metrics, change the effectiveness of the defect prediction by comparing prediction results for datasets with and without code smells-oriented metrics. In a result, we observed only small improvement of effectiveness of defect prediction when dataset extended with bad smells metrics was used: average accuracy value increased by 0.0091 and stayed within the margin of error. However, when only use of code smells based metrics were used for prediction (without basic set of metrics), such process resulted with surprisingly high accuracy (0.8249) and F-measure (0.8286) results. We also elaborated data anomalies and problems we observed when two different metric sources were used to prepare one, consistent set of data. Conclusion: Extending the dataset by the code smells sourced metric does not significantly improve the prediction effectiveness. Achieved result did not compensate effort needed to collect additional metrics. However, we observed that defect prediction based on the code smells only is still highly effective and can be used especially where other metrics hardly be used.Comment: Chapter 10 in Software Engineering: Improving Practice through Research (B. Hnatkowska and M. \'Smia{\l}ek, eds.), pp. 163-176, 201

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    An agent-driven semantical identifier using radial basis neural networks and reinforcement learning

    Full text link
    Due to the huge availability of documents in digital form, and the deception possibility raise bound to the essence of digital documents and the way they are spread, the authorship attribution problem has constantly increased its relevance. Nowadays, authorship attribution,for both information retrieval and analysis, has gained great importance in the context of security, trust and copyright preservation. This work proposes an innovative multi-agent driven machine learning technique that has been developed for authorship attribution. By means of a preprocessing for word-grouping and time-period related analysis of the common lexicon, we determine a bias reference level for the recurrence frequency of the words within analysed texts, and then train a Radial Basis Neural Networks (RBPNN)-based classifier to identify the correct author. The main advantage of the proposed approach lies in the generality of the semantic analysis, which can be applied to different contexts and lexical domains, without requiring any modification. Moreover, the proposed system is able to incorporate an external input, meant to tune the classifier, and then self-adjust by means of continuous learning reinforcement.Comment: Published on: Proceedings of the XV Workshop "Dagli Oggetti agli Agenti" (WOA 2014), Catania, Italy, Sepember. 25-26, 201
    corecore