449 research outputs found

    L-CAQ: Joint link-oriented channel-availability and channel-quality based channel selection for mobile cognitive radio networks

    Get PDF
    Channel availability probability (CAP) and channel quality (CQ) are two key metrics that can be used to efficiently design a channel selection strategy in cognitive radio networks. For static scenarios, i.e., where all the users are immobile, the CAP metric depends only on the primary users' activity whereas the CQ metric remains relatively constant. In contrast, for mobile scenarios, the values of both metrics fluctuate not only with time (time-variant) but also over different links between users (link-variant) due to the dynamic variation of primary- and secondary-users' relative positions. As an attempt to address this dynamic fluctuation, this paper proposes L-CAQ: a link-oriented channel-availability and channel-quality based channel selection strategy that aims to maximize the link throughput. The L-CAQ scheme considers accurate estimation of the aforementioned two channel selection metrics, which are governed by the mobility-induced non-stationary network topology, and endeavors to select a channel that jointly maximizes the CAP and CQ. The benefits of the proposed scheme are demonstrated through numerical simulation for mobile cognitive radio networks

    Modeling, analysis, and optimization for wireless networks in the presence of heavy tails

    Get PDF
    The heavy-tailed traffic from wireless users, caused by the emerging Internet and multimedia applications, induces extremely dynamic and variable network environment, which can fundamentally change the way in which wireless networks are conceived, designed, and operated. This thesis is concerned with modeling, analysis, and optimization of wireless networks in the presence of heavy tails. First, a novel traffic model is proposed, which captures the inherent relationship between the traffic dynamics and the joint effects of the mobility variability of network users and the spatial correlation in their observed physical phenomenon. Next, the asymptotic delay distribution of wireless users is analyzed under different traffic patterns and spectrum conditions, which reveals the critical conditions under which wireless users can experience heavy-tailed delay with significantly degraded QoS performance. Based on the delay analysis, the fundamental impact of heavy-tailed environment on network stability is studied. Specifically, a new network stability criterion, namely moment stability, is introduced to better characterize the QoS performance in the heavy-tailed environment. Accordingly, a throughput-optimal scheduling algorithm is proposed to maximize network throughput while guaranteeing moment stability. Furthermore, the impact of heavy-tailed spectrum on network connectivity is investigated. Towards this, the necessary conditions on the existence of delay-bounded connectivity are derived. To enhance network connectivity, the mobility-assisted data forwarding scheme is exploited, whose important design parameters, such as critical mobility radius, are derived. Moreover, the latency in wireless mobile networks is analyzed, which exhibits asymptotic linearity in the initial distance between mobile users.Ph.D
    • …
    corecore