322 research outputs found

    QoS management and control for an all-IP WiMAX network architecture: Design, implementation and evaluation

    Get PDF
    The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS) requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks). One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Measurement-based Admission Control for Real-Time Traffic in IEEE 802.16 Wireless Metropolitan Area Network

    Get PDF
    To support real-time applications, we present a Measurement-based Admission Control (MBAC) scheme with Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm. The objective of the admission control scheme is to admit new real-time application call into the system without jeopardizing the maximum average packet delay bound. Measured values of the average packet delay from the network are used for the admission decision. As long as a new call can obtain the requested service and the packet delay of existing calls are not risked by admitting it, the new call will be accepted into the network. In addition, M-LWDF scheduling algorithm is introduced to efficiently allocate network resource. Simulation results show that the proposed MBAC scheme maintains good packet delay bound
    corecore