53 research outputs found

    Distributed Inference and Learning with Byzantine Data

    Get PDF
    We are living in an increasingly networked world with sensing networks of varying shapes and sizes: the network often comprises of several tiny devices (or nodes) communicating with each other via different topologies. To make the problem even more complicated, the nodes in the network can be unreliable due to a variety of reasons: noise, faults and attacks, thus, providing corrupted data. Although the area of statistical inference has been an active area of research in the past, distributed learning and inference in a networked setup with potentially unreliable components has only gained attention recently. The emergence of big and dirty data era demands new distributed learning and inference solutions to tackle the problem of inference with corrupted data. Distributed inference networks (DINs) consist of a group of networked entities which acquire observations regarding a phenomenon of interest (POI), collaborate with other entities in the network by sharing their inference via different topologies to make a global inference. The central goal of this thesis is to analyze the effect of corrupted (or falsified) data on the inference performance of DINs and design robust strategies to ensure reliable overall performance for several practical network architectures. Specifically, the inference (or learning) process can be that of detection or estimation or classification, and the topology of the system can be parallel, hierarchical or fully decentralized (peer to peer). Note that, the corrupted data model may seem similar to the scenario where local decisions are transmitted over a Binary Symmetric Channel (BSC) with a certain cross over probability, however, there are fundamental differences. Over the last three decades, research community has extensively studied the impact of transmission channels or faults on the distributed detection system and related problems due to its importance in several applications. However, corrupted (Byzantine) data models considered in this thesis, are philosophically different from the BSC or the faulty sensor cases. Byzantines are intentional and intelligent, therefore, they can optimize over the data corruption parameters. Thus, in contrast to channel aware detection, both the FC and the Byzantines can optimize their utility by choosing their actions based on the knowledge of their opponent’s behavior. Study of these practically motivated scenarios in the presence of Byzantines is of utmost importance, and is missing from the channel aware detection and fault tolerant detection literature. This thesis advances the distributed inference literature by providing fundamental limits of distributed inference with Byzantine data and provides optimal counter-measures (using the insights provided by these fundamental limits) from a network designer’s perspective. Note that, the analysis of problems related to strategical interaction between Byzantines and network designed is very challenging (NP-hard is many cases). However, we show that by utilizing the properties of the network architecture, efficient solutions can be obtained. Specifically, we found that several problems related to the design of optimal counter-measures in the inference context are, in fact, special cases of these NP-hard problems which can be solved in polynomial time. First, we consider the problem of distributed Bayesian detection in the presence of data falsification (or Byzantine) attacks in the parallel topology. Byzantines considered in this thesis are those nodes that are compromised and reprogrammed by an adversary to transmit false information to a centralized fusion center (FC) to degrade detection performance. We show that above a certain fraction of Byzantine attackers in the network, the detection scheme becomes completely incapable (or blind) of utilizing the sensor data for detection. When the fraction of Byzantines is not sufficient to blind the FC, we also provide closed form expressions for the optimal attacking strategies for the Byzantines that most degrade the detection performance. Optimal attacking strategies in certain cases have the minimax property and, therefore, the knowledge of these strategies has practical significance and can be used to implement a robust detector at the FC. In several practical situations, parallel topology cannot be implemented due to limiting factors, such as, the FC being outside the communication range of the nodes and limited energy budget of the nodes. In such scenarios, a multi-hop network is employed, where nodes are organized hierarchically into multiple levels (tree networks). Next, we study the problem of distributed inference in tree topologies in the presence of Byzantines under several practical scenarios. We analytically characterize the effect of Byzantines on the inference performance of the system. We also look at the possible counter-measures from the FC’s perspective to protect the network from these Byzantines. These counter-measures are of two kinds: Byzantine identification schemes and Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed that learn the identity of Byzantines in the network and use this information to improve system performance. For scenarios where this is not possible, Byzantine tolerant schemes, which use game theory and error-correcting codes, are developed that tolerate the effect of Byzantines while maintaining a reasonably good inference performance in the network. Going a step further, we also consider scenarios where a centralized FC is not available. In such scenarios, a solution is to employ detection approaches which are based on fully distributed consensus algorithms, where all of the nodes exchange information only with their neighbors. For such networks, we analytically characterize the negative effect of Byzantines on the steady-state and transient detection performance of conventional consensus-based detection schemes. To avoid performance deterioration, we propose a distributed weighted average consensus algorithm that is robust to Byzantine attacks. Next, we exploit the statistical distribution of the nodes’ data to devise techniques for mitigating the influence of data falsifying Byzantines on the distributed detection system. Since some parameters of the statistical distribution of the nodes’ data might not be known a priori, we propose learning based techniques to enable an adaptive design of the local fusion or update rules. The above considerations highlight the negative effect of the corrupted data on the inference performance. However, it is possible for a system designer to utilize the corrupted data for network’s benefit. Finally, we consider the problem of detecting a high dimensional signal based on compressed measurements with secrecy guarantees. We consider a scenario where the network operates in the presence of an eavesdropper who wants to discover the state of the nature being monitored by the system. To keep the data secret from the eavesdropper, we propose to use cooperating trustworthy nodes that assist the FC by injecting corrupted data in the system to deceive the eavesdropper. We also design the system by determining the optimal values of parameters which maximize the detection performance at the FC while ensuring perfect secrecy at the eavesdropper

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world

    Distributed detection and estimation in wireless sensor networks: resource allocation, fusion rules, and network security

    Get PDF
    This thesis addresses the problem of detection of an unknown binary event. In particular, we consider centralized detection, distributed detection, and network security in wireless sensor networks (WSNs). The communication links among SNs are subject to limited SN transmit power, limited bandwidth (BW), and are modeled as orthogonal channels with path loss, flat fading and additive white Gaussian noise (AWGN). We propose algorithms for resource allocations, fusion rules, and network security. In the first part of this thesis, we consider the centralized detection and calculate the optimal transmit power allocation and the optimal number of quantization bits for each SN. The resource allocation is performed at the fusion center (FC) and it is referred as a centralized approach. We also propose a novel fully distributeddistributed algorithm to address this resource allocation problem. What makes this scheme attractive is that the SNs share with their neighbors just their individual transmit power at the current states. Finally, the optimal soft fusion rule at the FC is derived. But as this rule requires a-priori knowledge that is difficult to attain in practice, suboptimal fusion rules are proposed that are realizable in practice. The second part considers a fully distributed detection framework and we propose a two-step distributed quantized fusion rule algorithm where in the first step the SNs collaborate with their neighbors through error-free, orthogonal channels. In the second step, local 1-bit decisions generated in the first step are shared among neighbors to yield a consensus. A binary hypothesis testing is performed at any arbitrary SN to optimally declare the global decision. Simulations show that our proposed quantized two-step distributed detection algorithm approaches the performance of the unquantized centralized (with a FC) detector and its power consumption is shown to be 50% less than the existing (unquantized) conventional algorithm. Finally, we analyze the detection performance of under-attack WSNs and derive attacking and defense strategies from both the Attacker and the FC perspective. We re-cast the problem as a minimax game between the FC and Attacker and show that the Nash Equilibrium (NE) exists. We also propose a new non-complex and efficient reputation-based scheme to identify these compromised SNs. Based on this reputation metric, we propose a novel FC weight computation strategy ensuring that the weights for the identified compromised SNs are likely to be decreased. In this way, the FC decides how much a SN should contribute to its final decision. We show that this strategy outperforms the existing schemes

    Efficient, Reliable and Secure Distributed Protocols for MANETs

    Get PDF
    This thesis is divided into two parts. The first part explores the difficulties of bootstrapping and maintaining a security infrastructure for military Mobile Ad Hoc NETworks (MANETs). The assumed absence of dedicated infrastructural elements necessitates, that security services in ad hoc networks may be built from the ground up. We develop a cluster algorithm, incorporating a trust metric in the cluster head selection process to securely determine constituting nodes in a distributed Trust Authority (TA) for MANETs. Following this, we develop non-interactive key distribution protocols for the distribution of symmetric keys in MANETs. We explore the computational requirements of our protocols and simulate the key distribution process. The second part of this thesis builds upon the security infrastructure of the first part and examines two distributed protocols for MANETs. Firstly, we present a novel algorithm for enhancing the efficiency and robustness of distributed protocols for contacting TA nodes in MANETs. Our algorithm determines a quorum of trust authority nodes required for a distributed protocol run based upon a set of quality metrics, and establishes an efficient routing strategy to contact these nodes. Secondly, we present a probabilistic path authentication scheme based on message authentication codes (MACs). Our scheme minimises both communication and computation overhead in authenticating the path over which a stream of packets travels and facilitates the detection of adversarial nodes on the path

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Location Privacy-Preserving Strategies for Secondary Spectrum Use

    Get PDF
    The scarcity of wireless spectrum resources and the overwhelming demand for wireless broadband resources have prompted industry, government agencies and academia within the wireless communities to develop and come up with effective solutions that can make additional spectrum available for broadband data. As part of these ongoing efforts, cognitive radio networks (CRNs) have emerged as an essential technology for enabling and promoting dynamic spectrum access and sharing, a paradigm primarily aimed at addressing the spectrum scarcity and shortage challenges by permitting and enabling unlicensed or secondary users (SUs) to freely search, locate and exploit unused licensed spectrum opportunities. Despite their great potentials for improving spectrum utilization efficiency and for addressing the spectrum shortage problem, CRNs suffer from serious location privacy issues, which essentially tend to disclose the location information of the SUs to other system entities during their usage of these open spectrum opportunities. Knowing that their whereabouts may be exposed, SUs can be discouraged from joining and participating in the CRNs, potentially hindering the adoption and deployment of this technology. In this thesis, we propose frameworks that are suitable for CRNs, but also preserve the location privacy information of these SU s. More specifically, 1. We propose location privacy-preserving protocols that protect the location privacy of SUs in cooperative sensing-based CRNs while allowing the SUs to perform their spectrum sensing tasks reliably and effectively. Our proposed protocols allow also the detection of malicious user activities through the adoption of reputation mechanisms. 2. We propose location privacy-preserving approaches that provide information-theoretic privacy to SU s’ location in database-driven CRNs through the exploitation of the structured nature of spectrum databases and the fact that database-driven CRNs, by design, rely on multiple spectrum databases. 3. We propose a trustworthy framework for new generation of spectrum access systems in the 3.5 GHz band that not only protects SUs’ privacy, but also ensures that they comply with the unique system requirements, while allowing the detection of misbehaving users
    • …
    corecore