33,222 research outputs found

    Communication Cost for Updating Linear Functions when Message Updates are Sparse: Connections to Maximally Recoverable Codes

    Full text link
    We consider a communication problem in which an update of the source message needs to be conveyed to one or more distant receivers that are interested in maintaining specific linear functions of the source message. The setting is one in which the updates are sparse in nature, and where neither the source nor the receiver(s) is aware of the exact {\em difference vector}, but only know the amount of sparsity that is present in the difference-vector. Under this setting, we are interested in devising linear encoding and decoding schemes that minimize the communication cost involved. We show that the optimal solution to this problem is closely related to the notion of maximally recoverable codes (MRCs), which were originally introduced in the context of coding for storage systems. In the context of storage, MRCs guarantee optimal erasure protection when the system is partially constrained to have local parity relations among the storage nodes. In our problem, we show that optimal solutions exist if and only if MRCs of certain kind (identified by the desired linear functions) exist. We consider point-to-point and broadcast versions of the problem, and identify connections to MRCs under both these settings. For the point-to-point setting, we show that our linear-encoder based achievable scheme is optimal even when non-linear encoding is permitted. The theory is illustrated in the context of updating erasure coded storage nodes. We present examples based on modern storage codes such as the minimum bandwidth regenerating codes.Comment: To Appear in IEEE Transactions on Information Theor

    Maximising Average Energy Efficiency for Two-User AWGN Broadcast Channel

    Get PDF
    Energy consumption has become an increasingly important aspect of wireless communications, from both an economical and environmental point of view. New enhancements are being placed on mobile networks to reduce the power consumption of both mobile terminals and base stations. This paper studies the achievable rate region of AWGN broadcast channels under Time-division, Frequency-division and Superposition coding, and locates the optimal energyefficient rate-pair according to a comparison metric based on the average energy efficiency of the system. In addition to the transmit power, circuit power and signalling power are also incorporated in the energy efficiency function, with simulation results verifying that the Superposition coding scheme achieves the highest energy efficiency in an ideal, but non-realistic scenario, where the signalling power is zero. With moderate signalling power, the Frequency-division scheme is the most energy-efficient, with Superposition coding and Time-division becoming second and third best. Conversely, when the signalling power is high, both Timedivision and Frequency-division schemes outperform Superposition coding. On the other hand, the Superposition coding scheme also incorporates rate-fairness into the system, which allows both users to transmit whilst maximising the energy efficiency

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Linear Precoding and Equalization for Network MIMO with Partial Cooperation

    Full text link
    A cellular multiple-input multiple-output (MIMO) downlink system is studied in which each base station (BS) transmits to some of the users, so that each user receives its intended signal from a subset of the BSs. This scenario is referred to as network MIMO with partial cooperation, since only a subset of the BSs are able to coordinate their transmission towards any user. The focus of this paper is on the optimization of linear beamforming strategies at the BSs and at the users for network MIMO with partial cooperation. Individual power constraints at the BSs are enforced, along with constraints on the number of streams per user. It is first shown that the system is equivalent to a MIMO interference channel with generalized linear constraints (MIMO-IFC-GC). The problems of maximizing the sum-rate(SR) and minimizing the weighted sum mean square error (WSMSE) of the data estimates are non-convex, and suboptimal solutions with reasonable complexity need to be devised. Based on this, suboptimal techniques that aim at maximizing the sum-rate for the MIMO-IFC-GC are reviewed from recent literature and extended to the MIMO-IFC-GC where necessary. Novel designs that aim at minimizing the WSMSE are then proposed. Extensive numerical simulations are provided to compare the performance of the considered schemes for realistic cellular systems.Comment: 13 pages, 5 figures, published in IEEE Transactions on Vehicular Technology, June 201
    • …
    corecore