744 research outputs found

    The Single-Uniprior Index-Coding Problem: The Single-Sender Case and The Multi-Sender Extension

    Full text link
    Index coding studies multiterminal source-coding problems where a set of receivers are required to decode multiple (possibly different) messages from a common broadcast, and they each know some messages a priori. In this paper, at the receiver end, we consider a special setting where each receiver knows only one message a priori, and each message is known to only one receiver. At the broadcasting end, we consider a generalized setting where there could be multiple senders, and each sender knows a subset of the messages. The senders collaborate to transmit an index code. This work looks at minimizing the number of total coded bits the senders are required to transmit. When there is only one sender, we propose a pruning algorithm to find a lower bound on the optimal (i.e., the shortest) index codelength, and show that it is achievable by linear index codes. When there are two or more senders, we propose an appending technique to be used in conjunction with the pruning technique to give a lower bound on the optimal index codelength; we also derive an upper bound based on cyclic codes. While the two bounds do not match in general, for the special case where no two distinct senders know any message in common, the bounds match, giving the optimal index codelength. The results are expressed in terms of strongly connected components in directed graphs that represent the index-coding problems.Comment: Author final manuscrip

    Index Coding: Rank-Invariant Extensions

    Full text link
    An index coding (IC) problem consisting of a server and multiple receivers with different side-information and demand sets can be equivalently represented using a fitting matrix. A scalar linear index code to a given IC problem is a matrix representing the transmitted linear combinations of the message symbols. The length of an index code is then the number of transmissions (or equivalently, the number of rows in the index code). An IC problem Iext{\cal I}_{ext} is called an extension of another IC problem I{\cal I} if the fitting matrix of I{\cal I} is a submatrix of the fitting matrix of Iext{\cal I}_{ext}. We first present a straightforward mm\textit{-order} extension Iext{\cal I}_{ext} of an IC problem I{\cal I} for which an index code is obtained by concatenating mm copies of an index code of I{\cal I}. The length of the codes is the same for both I{\cal I} and Iext{\cal I}_{ext}, and if the index code for I{\cal I} has optimal length then so does the extended code for Iext{\cal I}_{ext}. More generally, an extended IC problem of I{\cal I} having the same optimal length as I{\cal I} is said to be a \textit{rank-invariant} extension of I{\cal I}. We then focus on 22-order rank-invariant extensions of I{\cal I}, and present constructions of such extensions based on involutory permutation matrices

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem
    • …
    corecore