2,171 research outputs found

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface

    Full text link
    Given a graph GG cellularly embedded on a surface Σ\Sigma of genus gg, a cut graph is a subgraph of GG such that cutting Σ\Sigma along GG yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε>0\varepsilon >0, we show how to compute a (1+ε)(1+ \varepsilon) approximation of the shortest cut graph in time f(ε,g)n3f(\varepsilon, g)n^3. Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Ru\'e, Sau and Thilikos, which may be of independent interest

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S[nlglgn,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlglgc)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201

    Computational study on planar dominating set problem

    Get PDF
    AbstractRecently, there has been significant theoretical progress towards fixed-parameter algorithms for the DOMINATING SET problem of planar graphs. It is known that the problem on a planar graph with n vertices and dominating number k can be solved in O(2O(k)n) time using tree/branch-decomposition based algorithms. In this paper, we report computational results of Fomin and Thilikos algorithm which uses the branch-decomposition based approach. The computational results show that the algorithm can solve the DOMINATING SET problem of large planar graphs in a practical time and memory space for the class of graphs with small branchwidth. For the class of graphs with large branchwidth, the size of instances that can be solved by the algorithm in practice is limited to about one thousand edges due to a memory space bottleneck. The practical performances of the algorithm coincide with the theoretical analysis of the algorithm. The results of this paper suggest that the branch-decomposition based algorithms can be practical for some applications on planar graphs

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions

    Get PDF
    A divide-and-conquer strategy based on variations of the Lipton-Tarjan planar separator theorem has been one of the most common approaches for solving planar graph problems for more than 20 years. We present a new framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour & Thomas, combined with refined techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. Compared to divide-and-conquer algorithms, the main advantages of our method are a) it is a generic method which allows to attack broad classes of problems; b) the obtained algorithms provide a better worst case analysis. To exemplify our approach we show how to obtain an O(26.903√n) time algorithm solving weighted HAMILTONIAN CYCLE. We observe how our technique can be used to solve PLANAR GRAPH TSP in time O(29.8594√n). Our approach can be used to design parameterized algorithms as well. For example we introduce the first 2O(√ k)nO(1) time algorithm for parameterized Planar k-cycle by showing that for a given k we can decide if a planar graph on n vertices has a cycle of length at least k in time O(213.6√kn + n3)
    corecore