92,541 research outputs found

    Predictability and hierarchy in Drosophila behavior

    Full text link
    Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent amongst the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested sub-clusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states

    The evolutionary origins of hierarchy

    Get PDF
    Hierarchical organization -- the recursive composition of sub-modules -- is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force--the cost of connections--promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.Comment: 32 page

    A Formal Separation Between Strategic and Nonstrategic Behavior

    Full text link
    It is common in multiagent systems to make a distinction between "strategic" behavior and other forms of intentional but "nonstrategic" behavior: typically, that strategic agents model other agents while nonstrategic agents do not. However, a crisp boundary between these concepts has proven elusive. This problem is pervasive throughout the game theoretic literature on bounded rationality and particularly critical in parts of the behavioral game theory literature that make an explicit distinction between the behavior of "nonstrategic" level-0 agents and "strategic" higher-level agents (e.g., the level-k and cognitive hierarchy models). Overall, work discussing bounded rationality rarely gives clear guidance on how the rationality of nonstrategic agents must be bounded, instead typically just singling out specific decision rules and informally asserting them to be nonstrategic (e.g., truthfully revealing private information; randomizing uniformly). In this work, we propose a new, formal characterization of nonstrategic behavior. Our main contribution is to show that it satisfies two properties: (1) it is general enough to capture all purportedly "nonstrategic" decision rules of which we are aware in the behavioral game theory literature; (2) behavior that obeys our characterization is distinct from strategic behavior in a precise sense

    Electrophysiological Correlates of Visual Object Category Formation in a Prototype-Distortion Task

    Get PDF
    In perceptual learning studies, participants engage in extensive training in the discrimination of visual stimuli in order to modulate perceptual performance. Much of the literature in perceptual learning has looked at the induction of the reorganization of low-level representations in V1. However, much remains to be understood about the mechanisms behind how the adult brain (an expert in visual object categorization) extracts high-level visual objects from the environment and categorically represents them in the cortical visual hierarchy. Here, I used event-related potentials (ERPs) to investigate the neural mechanisms involved in object representation formation during a hybrid visual search and prototype distortion category learning task. EEG was continuously recorded while participants performed the hybrid task, in which a peripheral array of four dot patterns was briefly flashed on a computer screen. In half of the trials, one of the four dot patterns of the array contained the target, a distorted prototype pattern. The remaining trials contained only randomly generated patterns. After hundreds of trials, participants learned to discriminate the target pattern through corrective feedback. A multilevel modeling approach was used to examine the predictive relationship between behavioral performance over time and two ERP components, the N1 and the N250. The N1 is an early sensory component related to changes in visual attention and discrimination (Hopf et al., 2002; Vogel & Luck, 2000). The N250 is a component related to category learning and expertise (Krigolson et al., 2009; Scott et al., 2008; Tanaka et al., 2006). Results indicated that while N1 amplitudes did not change with improved performance, increasingly negative N250 amplitudes did develop over time and were predictive of improvements in pattern detection accuracy
    corecore