32 research outputs found

    A review of relay network on UAVS for enhanced connectivity

    Get PDF
    One of the best evolution in technology breakthroughs is the Unmanned Aerial Vehicle (UAV). This aerial system is able to perform the mission in an agile environment and can reach the hard areas to perform the tasks autonomously. UAVs can be used in post-disaster situations to estimate damages, to monitor and to respond to the victims. The Ground Control Station can also provide emergency messages and ad-hoc communication to the Mobile Users of the disaster-stricken community using this network. A wireless network can also extend its communication range using UAV as a relay. Major requirements from such networks are robustness, scalability, energy efficiency and reliability. In general, UAVs are easy to deploy, have Line of Sight options and are flexible in nature. However, their 3D mobility, energy constraints, and deployment environment introduce many challenges. This paper provides a discussion of basic UAV based multi-hop relay network architecture and analyses their benefits, applications, and tradeoffs. Key design considerations and challenges are investigated finding fundamental issues and potential research directions to exploit them. Finally, analytical tools and frameworks for performance optimizations are presented

    동일채널간섭이 존재하는 페이딩채널에서 무선 중계 네트워크의 성능 분석

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 이재홍.무선 중계 기술은 차세대 통신 시스템에서 요구되는 높은 서비스 품질/데이터 전송률 달성을 위한 가장 중요한 기술 중 하나이다. 중계 기술이 갖고 있는 다양한 장점으로 인해 중계 기술은 지금까지 IEEE 802.16j 및 3GPP LTE-Advanced 등의 무선통신 시스템 표준에 반영되기도 하였다. 그러나 실질적인 무선 중계 네트워크의 프로토콜 개발을 위해서는 여전히 해결해야하는 많은 문제들이 있다. 특히 대형셀과 소형셀이 동시에 존재하는 중첩셀 네트워크에서 이웃한 대형셀 및 소형셀로부터 받게되는 동일채널간섭은 차세대 무선통신 시스템의 성능을 저하시키는 주요 제한 요소인데 아직 연구가 미흡한 실정이다. 또한 전이중 중계 네트워크에서 단말기의 송신안테나에서 수신안테나로 들어오는 동일채널 루프간섭은 전이중 중계 네트워크의 성능을 결정하는 중요한 요소로 추가적인 연구가 필요한 실정이다. 본 논문에서는 동일채널간섭을 포함한 양방향 중계 네트워크, 동일채널 루프간섭을 포함한 양방향 전이중 중계 네트워크 및 무선 인지 다중 홉 네트워크의 성능을 분석하며, 주요한 연구결과는 다음과 같다. 첫째, 셀룰러 환경에서 높은 주파수 재사용율로 인해 발생한 동일채널간섭이 존재하는 양방향 중계 네트워크의 성능을 분석한다. 이때 임의의 한 사용자가 불능 사건이 발생하는 시나리오(개별 사용자 불능), 전체 사용자가 동시에 불능 사건이 발생한 시나리오(전체 사용자 불능)의 두 가지에 대해 성능을 분석한다. 여기에서 각 시나리오에 대하여 개별 사용자 불능 확률 및 전체 사용자 불능 확률을 폐형으로 유도한다. 모의실험을 통해 얻어진 불능 확률이 유도한 불능 확률 값과 일치함을 확인한다. 또한 동일채널간섭을 발생하는 인접 셀의 사용자가 늘어날수록 개별 사용자 불능 확률 및 전체 사용자 불능 확률이 증가함을 확인한다. 둘째, 동일채널 루프간섭이 존재하는 전이중 양방향 중계 네트워크를 연구한다. 여기에서 두 전이중 방식의 사용자들이 전이중 방식의 중계기를 이용하여 서로 신호를 교환한다. 이때 각 단말기들은 자신의 수신 신호에서 루프간섭 신호의 추정치를 제거한다. 단말기들이 채널 상태 정보를 정확하게 혹은 부정확하게 알고 있는 경우에 전이중 양방향 중계 네트워크의 불능 확률을 정확한 적분 표현 및 근사적 폐형 표현으로 유도한다. 모의실험을 통해 얻어지 결과가 유도한 수식과 일치함을 확인한다. 셋째, 대형셀과 소형셀이 동시에 존재하는 중첩셀 네트워크를 연구한다. 특히 인접 대형셀 및 소형셀에서 발생한 동일채널간섭이 존재하는 무선 인지 기반 다중 홉 소형셀 네트워크의 불능 확률을 분석한다. 모의실험을 통해 얻어진 불능 확률을 통해 유도한 불능 확률을 검증한다. 유도한 불능 확률 값과 모의실험을 통해 얻어진 불능 확률 값이 일치함을 확인한다. 대형셀의 수가 증가할수록 불능 확률이 증가함을 확인한다.Wireless relay technology is one of the most promising technologies for the future communication systems which provide higher data rate and better quality of service (QoS). Thanks to its advantages, it has been adopted in wireless standards such as IEEE 802.16j and 3GPP LTE-Advanced. However, there are still many challenges to be addressed for developing protocols of wireless relay networks. Especially, in multitier cellular networks (e.g. small cell underlaid macro cell), cochannel interference from multiple interferers in other macro cells and neighboring small cells is one of the major limiting factors due to frequency reuse for high spectrum utilization. In the full-duplex relay networks, cochannel loop interference from a transmit antenna to a receive antenna of a terminal is an important limiting factor to determine the performance of full-duplex relay networks. The dissertation consists of three main results. First, we analyze the performance of a two-way relay network experiencing cochannel interference from multiple interferers due to frequency reuse in cellular networks. In the two-way relay network, two users exchange their information with the help of an amplify-and-forward (AF) relay. We discuss two different scenarios: Outages are declared individually for each user (individual outage) and an outage is declared simultaneously for all users (common outage). We derive the closed-form expression for the individual outage probability and the exact integral expression for the common outage probability of the two-way relay network with multiple interferers. The validity of our analytical results is verified by a comparison with simulation results. It is shown that the analytical results perfectly match the simulation results of the individual and common outage probabilities. Also, it is shown that the individual and common outage probabilities increase as the number of interferers increases. Second, we investigate two-way full-duplex relaying with cochannel loop interference. In the two-way full-duplex relaying, two full-duplex users exchange data with each other via a full-duplex relay and each node attempts to subtract the estimate of the cochannel loop interference from its received signal. We derive the exact integral and approximate closed-form expressions for the outage probability of the two-way full-duplex relaying in case of perfect and imperfect channel state information. Monte Carlo simulation verifies the validity of analytical results. Third, we investigate a cognitive small cell network which is overlaid with a cellular network. We analyze the performance of the cognitive small cell network in the presence of cochannel interference from the cellular network. Analytical results are verified by Monte Carlo simulations. It is shown that the analytical results are in complete agreement with simulation results. It is shown that the outage probability increases as the number of cells increases.Abstract 1 Introduction 1.1 Background and Related Works 1.1.1 Relay Technology 1.1.2 Cognitive Radio 1.2 Outline of Dissertation 1.3 Notations 2 Two-Way Relay Network with Cochannel Interference 2.1 System Model 2.2 Outage Probability Derivation 2.2.1 Moment Generating Functions 2.2.2 Individual Outage Probability 2.2.3 Common Outage Probability 2.3 Numerical Results 2.4 Summary 3 Two-Way Full-Duplex Relaying with Cochannel Loop Interference 3.1 System Model 3.2 Outage Probability Derivation 3.2.1 Signal-to-Interference-plus-Noise Ratio 3.2.2 Cumulative Density Function 3.2.3 Outage Probability 3.3 Numerical Results 3.4 Summary 4 Multi-hop Cognitive Radio Network with Cochannel Interference 4.1 System Model 4.2 Outage Probability Derivation 4.2.1 Signal-to-Interference-plus-Noise Ratio 4.2.2 Cumulative Density Function 4.2.3 Outage Probability 4.3 Numerical Results 4.4 Summary 5 Conclusions 5.1 Summary 5.2 Future Works Bibliography Korean Abstract AcknowledgmentsDocto

    Capacity and performance analysis of advanced multiple antenna communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) antenna systems have been shown to be able to substantially increase date rate and improve reliability without extra spectrum and power resources. The increasing popularity and enormous prospect of MIMO technology calls for a better understanding of the performance of MIMO systems operating over practical environments. Motivated by this, this thesis provides an analytical characterization of the capacity and performance of advanced MIMO antenna systems. First, the ergodic capacity of MIMO Nakagami-m fading channels is investigated. A unified way of deriving ergodic capacity bounds is developed under the majorization theory framework. The key idea is to study the ergodic capacity through the distribution of the diagonal elements of the quadratic channel HHy which is relatively easy to handle, avoiding the need of the eigenvalue distribution of the channel matrix which is extremely difficult to obtain. The proposed method is first applied on the conventional point-to-point MIMO systems under Nakagami-m fading, and later extended to the more general distributed MIMO systems. Second, the ergodic capacity of MIMO multi-keyhole and MIMO amplify-and-forward (AF) dual-hop systems is studied. A set of new statistical properties involving product of random complex Gaussian matrix, i.e., probability density function (p.d.f.) of an unordered eigenvalue, p.d.f. of the maximum eigenvalue, expected determinant and log-determinant, is derived. Based on these, analytical closedform expressions for the ergodic capacity of the systems are obtained and the connection between the product channels and conventional point-to-point MIMO channels is also revealed. Finally, the effect of co-channel interference is investigated. First, the performance of optimum combining (OC) systems operating in Rayleigh-product channels is analyzed based on novel closed-form expression of the cumulative distribution function (c.d.f.) of the maximum eigenvalue of the resultant channel matrix. Then, for MIMO Rician channels and MIMO Rayleigh-product channels, the ergodic capacity at low signal-to-noise ratio (SNR) regime is studied, and the impact of various system parameters, such as transmit and receive antenna number, Rician factor, channel mean matrix and interference-tonoise- ratio, is examined

    Amplify-and-Forward Distributed Beamforming with Local CSI in the Presence of Interferences

    Get PDF
    This paper introduces an optimum amplify-and-forward (AF) distributed beamforming (DBF) in the presence of cochannel interference (CCI) when only local channel-state information (CSI) is available at each relay. It is shown that the proposed DBF closely achieves the performance obtained with global CSI when interference power toward relays is small or there are a large number of interferers but greatly reduces the complexity and overhead. The proposed DBF provides significant improvements over the conventional DBF designed without considering CCI at the cost of slightly increased complexity and overhead and achieves the capacity scaling of 1/2log⁡K through K relays, where 1/2log⁡K corresponds to the maximal capacity scaling when there is no CCI

    Advanced DSP Algorithms For Modern Wireless Communication Transceivers

    Get PDF
    A higher network throughput, a minimized delay and reliable communications are some of many goals that wireless communication standards, such as the fifthgeneration (5G) standard and beyond, intend to guarantee for its customers. Hence, many key innovations are currently being proposed and investigated by researchers in the academic and industry circles to fulfill these goals. This dissertation investigates some of the proposed techniques that aim at increasing the spectral efficiency, enhancing the energy efficiency, and enabling low latency wireless communications systems. The contributions lay in the evaluation of the performance of several proposed receiver architectures as well as proposing novel digital signal processing (DSP) algorithms to enhance the performance of radio transceivers. Particularly, the effects of several radio frequency (RF) impairments on the functionality of a new class of wireless transceivers, the full-duplex transceivers, are thoroughly investigated. These transceivers are then designed to operate in a relaying scenario, where relay selection and beamforming are applied in a relaying network to increase its spectral efficiency. The dissertation then investigates the use of greedy algorithms in recovering orthogonal frequency division multiplexing (OFDM) signals by using sparse equalizers, which carry out the equalization in a more efficient manner when the low-complexity single tap OFDM equalizer can no longer recover the received signal due to severe interferences. The proposed sparse equalizers are shown to perform close to conventional optimal and dense equalizers when the OFDM signals are impaired by interferences caused by the insertion of an insufficient cyclic prefix and RF impairments

    Simultaneous Wireless Information and Power Transfer for Decode-and-Forward Multi-Hop Relay Systems in Energy-Constrained IoT Networks

    Full text link
    This paper studies a multi-hop decode-and-forward (DF) simultaneous wireless information and power transfer (SWIPT) system where a source sends data to a destination with the aid of multi-hop relays which do not depend on an external energy source. To this end, we apply power splitting (PS) based SWIPT relaying protocol so that the relays can harvest energy from the received signals from the previous hop to reliably forward the information of the source to the destination. We aim to solve two optimization problems relevant to our system model. First, we minimize the transmit power at the source under the individual quality-of-service (QoS) threshold constraints of the relays and the destination nodes by optimizing PS ratios at the relays. The second is to maximize the minimum system achievable rate by optimizing the PS ratio at each relay. Based on convex optimization techniques, the globally optimal PS ratio solution is obtained in closed-form for both problems. By setting the QoS threshold constraint the same for each node for the source transmit power problem, we discovered that either the minimum source transmit power or the maximum system throughput can be found using the same approach. Numerical results demonstrate the superiority of the proposed optimal SWIPT PS design over conventional fixed PS ratio schemes.Comment: 14 pages, 14 figures, Accepted for Publication in IEEE Internet of Things Journa

    Transceiver design and multi-hop D2D for UAV IoT coverage in disasters

    Get PDF
    When natural disasters strike, the coverage for Internet of Things (IoT) may be severely destroyed, due to the damaged communications infrastructure. Unmanned aerial vehicles (UAVs) can be exploited as flying base stations to provide emergency coverage for IoT, due to its mobility and flexibility. In this paper, we propose multi-antenna transceiver design and multi-hop device-to-device (D2D) communication to guarantee the reliable transmission and extend the UAV coverage for IoT in disasters. Firstly, multi-hop D2D links are established to extend the coverage of UAV emergency networks due to the constrained transmit power of the UAV. In particular, a shortest-path-routing algorithm is proposed to establish the D2D links rapidly with minimum nodes. The closed-form solutions for the number of hops and the outage probability are derived for the uplink and downlink. Secondly, the transceiver designs for the UAV uplink and downlink are studied to optimize the performance of UAV transmission. Due to the non-convexity of the problem, they are first transformed into convex ones and then, low-complexity algorithms are proposed to solve them efficiently. Simulation results show the performance improvement in the throughput and outage probability by the proposed schemes for UAV wireless coverage of IoT in disasters

    Komunikace na milimetrových vlnách v 5G a dalších sítích: Nové systémové modely a analýza výkonnosti

    Get PDF
    The dissertation investigates different network models, focusing on three important features for next generation cellular networks with respect to millimeter waves (mmWave) communications: the impact of fading and co-channel interference (CCI), energy efficiency, and spectrum efficiency. To address the first aim, the dissertation contains a study of a non-orthogonal multiple access (NOMA) technique in a multi-hop relay network which uses relays that harvest energy from power beacons (PB). This part derives the exact throughput expressions for NOMA and provides a performance analysis of three different NOMA schemes to determine the optimal parameters for the proposed system’s throughput. A self-learning clustering protocol (SLCP) in which a node learns its neighbor’s information is also proposed for determining the node density and the residual energy used to cluster head (CH) selection and improve energy efficiency, thereby prolonging sensor network lifetime and gaining higher throughput. Second, NOMA provides many opportunities for massive connectivity at lower latencies, but it may also cause co-channel interference by reusing frequencies. CCI and fading play a major role in deciding the quality of the received signal. The dissertation takes into account the presence of η and µ fading channels in a network using NOMA. The closed-form expressions of outage probability (OP) and throughput were derived with perfect successive interference cancellation (SIC) and imperfect SIC. The dissertation also addresses the integration of NOMA into a satellite communications network and evaluates its system performance under the effects of imperfect channel state information (CSI) and CCI. Finally, the dissertation presents a new model for a NOMA-based hybrid satellite-terrestrial relay network (HSTRN) using mmWave communications. The satellite deploys the NOMA scheme, whereas the ground relays are equipped with multiple antennas and employ the amplify and forward (AF) protocol. The rain attenuation coefficient is considered as the fading factor of the mmWave band to choose the best relay, and the widely applied hybrid shadowed-Rician and Nakagami-m channels characterize the transmission environment of HSTRN. The closed-form formulas for OP and ergodic capacity (EC) were derived to evaluate the system performance of the proposed model and then verified with Monte Carlo simulations.Dizertační práce zkoumala různé modely sítí a zaměřila se na tři důležité vlastnosti pro buňkové sítě příští generace s ohledem na mmW komunikace, kterými jsou: vliv útlumu a mezikanálového rušení (CCI), energetická účinnost a účinnost spektra. Co se týče prvního cíle, dizertace obsahuje studii techniky neortogonálního vícenásobného přístupu (NOMA) v bezdrátové multiskokové relay síti využívající získávání energie, kde relay uzly sbírají energii z energetických majáků (PB). Tato část přináší přesné výrazy propustnosti pro NOMA a analýzu výkonnosti se třemi různými schématy NOMA s cílem určit optimální parametry pro propustnost navrženého systému. Dále byl navržen samoučící se shlukovací protokol (SLCP), ve kterém se uzel učí informace o sousedech, aby určil hustotu uzlů a zbytkovou energii použitou k výběru hlavy shluku CH pro zlepšení energetické účinnosti, čímž může prodloužit životnost sensorové sítě a zvýšit propustnost. Za druhé, přístup NOMA poskytl mnoho příležitostí pro masivní připojení s nižší latencí, NOMA však může způsobovat mezikanálové rušení v důsledku opětovného využívání kmitočtů. CCI a útlum hrají klíčovou roli při rozhodování o kvalitě přijímaného signálu. V této dizertace je brána v úvahu přítomnost η a µ útlumových kanálů v síti užívající NOMA. Odvozeny jsou výrazy v uzavřené formě pro pravděpodobnost výpadku (OP) a propustnost s dokonalým postupným rušením rušení (SIC) a nedokonalým SIC. Dále se dizertace zabývá integrací přístupu NOMA do satelitní komunikační sítě a vyhodnocuje výkonnost systému při dopadech nedokonalé informace o stavu kanálu (CSI) a CCI. Závěrem disertační práce představuje nový model pro hybridní družicově-terestriální přenosovou síť (HSTRN) založenou na NOMA vícenásobném přístupu využívající mmWave komunikaci. Satelit využívá NOMA schéma, zatímco pozemní relay uzly jsou vybaveny více anténami a aplikují protokol zesilování a předávání (AF). Je zaveden srážkový koeficient, který je uvažován jako útlumový faktor mmWave pásma při výběru nejlepšího relay uzlu. Samotné přenosové prostředí HSTRN je charakterizováno pomocí hybridních Rician a Nakagami-m kanálů. Vztahy pro vyhodnocení výkonnosti systému navrženého modelu vyjadřující ergodickou kapacitu (EC) a pravděpodobnost ztrát (OP) byly odvozeny v uzavřené formě a následně ověřeny pomocí simulační numerické metody Monte Carlo.440 - Katedra telekomunikační technikyvyhově
    corecore