40 research outputs found

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios

    Enabling Technologies for 5G and Beyond: Bridging the Gap between Vision and Reality

    Get PDF
    It is common knowledge that the fifth generation (5G) of cellular networks will come with drastic transformation in the cellular systems capabilities and will redefine mobile services. 5G (and beyond) systems will be used for human interaction, in addition to person-to-machine and machine-to-machine communications, i.e., every-thing is connected to every-thing. These features will open a whole line of new business opportunities and contribute to the development of the society in many different ways, including developing and building smart cities, enhancing remote health care services, to name a few. However, such services come with an unprecedented growth of mobile traffic, which will lead to heavy challenges and requirements that have not been experienced before. Indeed, the new generations of cellular systems are required to support ultra-low latency services (less than one millisecond), and provide hundred times more data rate and connectivity, all compared to previous generations such as 4G. Moreover, they are expected to be highly secure due to the sensitivity of the transmitted information. Researchers from both academia and industry have been concerting significant efforts to develop new technologies that aim at enabling the new generation of cellular systems (5G and beyond) to realize their potential. Much emphasis has been put on finding new technologies that enhance the radio access network (RAN) capabilities as RAN is considered to be the bottleneck of cellular networks. Striking a balance between performance and cost has been at the center of the efforts that led to the newly developed technologies, which include non-orthogonal multiple access (NOMA), millimeter wave (mmWave) technology, self-organizing network (SON) and massive multiple-input multiple-output (MIMO). Moreover, physical layer security (PLS) has been praised for being a potential candidate for enforcing transmission security when combined with cryptography techniques. Although the main concepts of the aforementioned RAN key enabling technologies have been well defined, there are discrepancies between their intended (i.e., vision) performance and the achieved one. In fact, there is still much to do to bridge the gap between what has been promised by such technologies in terms of performance and what they might be able to achieve in real-life scenarios. This motivates us to identify the main reasons behind the aforementioned gaps and try to find ways to reduce such gaps. We first focus on NOMA where the main drawback of existing solutions is related to their poor performance in terms of spectral efficiency and connectivity. Another major drawback of existing NOMA solutions is that transmission rate per user decreases slightly with the number of users, which is a serious issue since future networks are expected to provide high connectivity. To this end, we develop NOMA solutions that could provide three times the achievable rate of existing solutions while maintaining a constant transmission rate per user regardless of the number of connected users. We then investigate the challenges facing mmWave transmissions. It has been demonstrated that such technology is highly sensitive to blockage, which limits its range of communication. To overcome this obstacle, we develop a beam-codebook based analog beam-steering scheme that achieves near maximum beamforming gain performance. The proposed technique has been tested and verified by real-life measurements performed at Bell Labs. Another line of research pursued in this thesis is investigating challenges pertaining to SON. It is known that radio access network self-planning is the most complex and sensitive task due to its impact on the cost of network deployment, etc., capital expenditure (CAPEX). To tackle this issue, we propose a comprehensive self-planning solution that provides all the planning parameters at once while guaranteeing that the system is optimally planned. The proposed scheme is compared to existing solutions and its superiority is demonstrated. We finally consider the communication secrecy problem and investigated the potential of employing PLS. Most of the existing PLS schemes are based on unrealistic assumptions, most notably is the assumption of having full knowledge about the whereabouts of the eavesdroppers. To solve this problem, we introduce a radically novel nonlinear precoding technique and a coding strategy that together allow to establish secure communication without any knowledge about the eavesdroppers. Moreover, we prove that it is possible to secure communications while achieving near transmitter-receiver channel capacity (the maximum theoretical rate)

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit power regime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective forenhancing the secrecy rate

    Spatial-spectral Terahertz Networks

    Get PDF
    This paper focuses on the spatial-spectral terahertz (THz) networks, where transmitters equipped with leaky-wave antennas send information to their receivers at the THz frequency bands. As a directional and nearly planar antenna, the leaky-wave antenna allows for information transmissions with narrow beams and high antenna gains. The conventional large antenna arrays are confronted with challenging issues such as scaling limits and path discovery in the THz frequencies. Therefore, this work exploits the potential of leaky-wave antennas in the dense THz networks, to establish low-complexity THz links. By addressing the propagation angle-frequency coupling effects, the transmission rate is analyzed. The results show that the leaky-wave antenna is efficient for achieving the high-speed transmission rate. The co-channel interference management is unnecessary when the THz transmitters with large subchannel bandwidths are not extremely dense. A simple subchannel allocation solution is proposed, which enhances the transmission rate compared with the same number of subchannels with the equal allocation of the frequency band. After subchannel allocation, a low-complexity power allocation method is proposed to improve the energy efficiency.Comment: accepted by the IEEE Transactions on Wireless Communication
    corecore