67 research outputs found

    Application of the b-spline collocation method to a geometrically non-linear beam problem

    Get PDF
    Engineers are researching solutions to resolve many of today\u27s technical challenges. Numerical techniques are used to solve the mathematical models that arise in engineering problems. A numerical technique that is increasingly being used to solve mathematical models in engineering research is called the B-spline Collocation Method. The B-spline Collocation Method has a few distinct advantages over the Finite Element and Finite Difference Methods. The main advantage is that the B-spline Collocation Method efficiently provides a piecewise-continuous, closed form solution. Another advantage is that the B-spline Collocation Method procedure is very simple and easy to apply to many problems involving partial differential equations. The current research involves developing, and extensively documenting, a comprehensive, step-by-step procedure for applying the B-spline Collocation Method to the solution of Boundary Value problems. In addition, the current research involves applying the B-spline Collocation Method to solve the mathematical model that arises in the deflection of a geometrically nonlinear, cantilevered beam. The solution is then compared to a known solution found in the literature

    Spline collocation method for singular perturbation problem

    Get PDF
    We introduce piecewise interpolating polynomials as an approximation for the driving terms in the numerical solution of the singularly perturbed differential equation. In this way we obtain the difference scheme which is second order accurate in uniform norm. We verify the convergence rate of presented scheme by numerical experiments

    Cubic B-spline collocation method for coupled system of ordinary differential equations with various boundary conditions

    Get PDF
    This paper is concerned with collocation approach using cubic B-spline to solve coupled system of boundary value problems with various boundary conditions. The collocation equations are methodically derived using cubic B splines, for problems with Dirichlet data and an iterative method with assured convergence is described to solve the resulting system of algebraic equations. Problems with Cauchy or mixed boundary condition have been converted into series of Dirichlet problems using the bisection method. Nonlinear problem is linearized using quasilinearization to be handled by our method. Fourth order equation is converted into a coupled second order equations and solved by the proposed method . Several illustrative examples are presented with their error norms and order of convergence.Publisher's Versio

    Numerical solution of singularly perturbed problems using Haar wavelet collocation method

    Get PDF
    Abstract: In this paper, a collocation method based on Haar wavelets is proposed for the numerical solutions of singularly perturbed boundary value problems. The properties of the Haar wavelet expansions together with operational matrix of integration are utilized to convert the problems into systems of algebraic equations with unknown coefficients. To demonstrate the effectiveness and efficiency of the method various benchmark problems are implemented and the comparisons are given with other methods existing in the recent literature. The demonstrated results confirm that the proposed method is considerably efficient, accurate, simple, and computationally attractive

    Higher order numerical methods for singular perturbation problems

    Get PDF
    Philosophiae Doctor - PhDIn recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis.South Afric

    A Maximum Entropy Method for Solving the Boundary Value Problem of Second Order Ordinary Differential Equations

    Get PDF
    We propose a new method to solve the boundary value problem for a class of second order linear ordinary differential equations, which has a non-negative solution. The method applies the maximum entropy principle to approximating the solution numerically. The theoretical analysis and numerical examples show that our method is convergent

    Spline collocation method for singular perturbation problem

    Get PDF
    We introduce piecewise interpolating polynomials as an approximation for the driving terms in the numerical solution of the singularly perturbed differential equation. In this way we obtain the difference scheme which is second order accurate in uniform norm. We verify the convergence rate of presented scheme by numerical experiments

    An efficient numerical method based on exponential B-splines for time-fractional Black-Scholes equation governing European options

    Full text link
    In this paper a time-fractional Black-Scholes model (TFBSM) is considered to study the price change of the underlying fractal transmission system. We develop and analyze a numerical method to solve the TFBSM governing European options. The numerical method combines the exponential B-spline collocation to discretize in space and a finite difference method to discretize in time. The method is shown to be unconditionally stable using von-Neumann analysis. Also, the method is proved to be convergent of order two in space and 2μ2-\mu is time, where μ\mu is order of the fractional derivative. We implement the method on various numerical examples in order to illustrate the accuracy of the method, and validation of the theoretical findings. In addition, as an application, the method is used to price several different European options such as the European call option, European put option, and European double barrier knock-out call option.Comment: 34 pages, 12 figure

    List of contents

    Get PDF

    Numerical singular perturbation approaches based on spline approximation methods for solving problems in computational finance

    Get PDF
    Philosophiae Doctor - PhDOptions are a special type of derivative securities because their values are derived from the value of some underlying security. Most options can be grouped into either of the two categories: European options which can be exercised only on the expiration date, and American options which can be exercised on or before the expiration date. American options are much harder to deal with than European ones. The reason being the optimal exercise policy of these options which led to free boundary problems. Ever since the seminal work of Black and Scholes [J. Pol. Bean. 81(3) (1973), 637-659], the differential equation approach in pricing options has attracted many researchers. Recently, numerical singular perturbation techniques have been used extensively for solving many differential equation models of sciences and engineering. In this thesis, we explore some of those methods which are based on spline approximations to solve the option pricing problems. We show a systematic construction and analysis of these methods to solve some European option problems and then extend the approach to solve problems of pricing American options as well as some exotic options. Proposed methods are analyzed for stability and convergence. Thorough numerical results are presented and compared with those seen in the literature
    corecore