107 research outputs found

    Machine Autonomy : Definition, Approaches, Challenges and Research Gaps

    Get PDF
    Postprin

    Gradient-free Policy Architecture Search and Adaptation

    Full text link
    We develop a method for policy architecture search and adaptation via gradient-free optimization which can learn to perform autonomous driving tasks. By learning from both demonstration and environmental reward we develop a model that can learn with relatively few early catastrophic failures. We first learn an architecture of appropriate complexity to perceive aspects of world state relevant to the expert demonstration, and then mitigate the effect of domain-shift during deployment by adapting a policy demonstrated in a source domain to rewards obtained in a target environment. We show that our approach allows safer learning than baseline methods, offering a reduced cumulative crash metric over the agent's lifetime as it learns to drive in a realistic simulated environment.Comment: Accepted in Conference on Robot Learning, 201

    Evolving Artificial Neural Networks To Imitate Human Behaviour In Shinobi III : Return of the Ninja Master

    Full text link
    Our society is increasingly fond of computational tools. This phenomenon has greatly increased over the past decade following, among other factors, the emergence of a new Artificial Intelligence paradigm. Specifically, the coupling of two algorithmic techniques, Deep Neural Networks and Stochastic Gradient Descent, thrusted by an exponentially increasing computing capacity, has and is continuing to become a major asset in many modern technologies. However, as progress takes its course, some still wonder whether other methods could similarly or even more greatly benefit from these various hardware advances. In order to further this study, we delve in this thesis into Evolutionary Algorithms and their application to Dynamic Neural Networks, two techniques which despite enjoying many advantageous properties have yet to find their niche in contemporary Artificial Intelligence. We find that by elaborating new methods while exploiting strong computational resources, it becomes possible to develop strongly performing agents on a variety of benchmarks but also some other agents behaving very similarly to human subjects on the video game Shinobi III : Return of The Ninja Master, typical complex tasks previously out of reach for non-gradient-based optimization

    Evolving‌ ‌artificial‌ ‌neural‌ ‌networks‌‌ ‌to‌ ‌imitate‌ ‌human‌ ‌behaviour‌‌ ‌in‌ ‌Shinobi‌ ‌III‌ ‌:‌ ‌return‌ ‌of‌ ‌the‌ ‌Ninja‌ ‌master‌

    Full text link
    Notre société est de plus en plus friande d’outils informatiques. Ce phénomène s’est particulièrement accru lors de cette dernière décennie suite, entre autres, à l’émergence d’un nouveau paradigme d’Intelligence Artificielle. Plus précisément, le couplage de deux techniques algorithmiques, les Réseaux de Neurones Profonds et la Descente de Gradient Stochastique, propulsé par une force de calcul exponentiellement croissante, est devenu et continue de devenir un atout majeur dans de nombreuses nouvelles technologies. Néanmoins, alors que le progrès suit son cours, certains se demandent toujours si d’autres méthodes pourraient similairement, voire davantage, bénéficier de ces diverses avancées matérielles. Afin de pousser cette étude, nous nous attelons dans ce mémoire aux Algorithmes Évolutionnaires et leur application aux Réseaux de Neurones Dynamiques, deux techniques dotées d’un grand nombre de propriétés avantageuses n’ayant toutefois pas trouvé leur place au sein de l’Intelligence Artificielle contemporaine. Nous trouvons qu’en élaborant de nouvelles méthodes tout en exploitant une forte puissance informatique, il nous devient alors possible de développer des agents à haute performance sur des bases de référence ainsi que d’autres agents se comportant de façon très similaire à des sujets humains sur le jeu vidéo Shinobi III : Return of The Ninja Master, cas typique de tâches complexes que seule l’optimisation par gradient était capable d’aborder jusqu’alors.Our society is increasingly fond of computational tools. This phenomenon has greatly increased over the past decade following, among other factors, the emergence of a new Artificial Intelligence paradigm. Specifically, the coupling of two algorithmic techniques, Deep Neural Networks and Stochastic Gradient Descent, thrusted by an exponentially increasing computing capacity, has and is continuing to become a major asset in many modern technologies. However, as progress takes its course, some still wonder whether other methods could similarly or even more greatly benefit from these various hardware advances. In order to further this study, we delve in this thesis into Evolutionary Algorithms and their application to Dynamic Neural Networks, two techniques which despite enjoying many advantageous properties have yet to find their niche in contemporary Artificial Intelligence. We find that by elaborating new methods while exploiting strong computational resources, it becomes possible to develop strongly performing agents on a variety of benchmarks but also some other agents behaving very similarly to human subjects on the video game Shinobi III : Return of The Ninja Master, typical complex tasks previously out of reach for non-gradient-based optimization

    Evolutionary Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    An Intelligent Social Learning-based Optimization Strategy for Black-box Robotic Control with Reinforcement Learning

    Full text link
    Implementing intelligent control of robots is a difficult task, especially when dealing with complex black-box systems, because of the lack of visibility and understanding of how these robots work internally. This paper proposes an Intelligent Social Learning (ISL) algorithm to enable intelligent control of black-box robotic systems. Inspired by mutual learning among individuals in human social groups, ISL includes learning, imitation, and self-study styles. Individuals in the learning style use the Levy flight search strategy to learn from the best performer and form the closest relationships. In the imitation style, individuals mimic the best performer with a second-level rapport by employing a random perturbation strategy. In the self-study style, individuals learn independently using a normal distribution sampling method while maintaining a distant relationship with the best performer. Individuals in the population are regarded as autonomous intelligent agents in each style. Neural networks perform strategic actions in three styles to interact with the environment and the robot and iteratively optimize the network policy. Overall, ISL builds on the principles of intelligent optimization, incorporating ideas from reinforcement learning, and possesses strong search capabilities, fast computation speed, fewer hyperparameters, and insensitivity to sparse rewards. The proposed ISL algorithm is compared with four state-of-the-art methods on six continuous control benchmark cases in MuJoCo to verify its effectiveness and advantages. Furthermore, ISL is adopted in the simulation and experimental grasping tasks of the UR3 robot for validations, and satisfactory solutions are yielded
    • …
    corecore