4,314 research outputs found

    A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

    Full text link
    In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as `partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. We show that the partition-based R-ADMM algorithm we introduce is linked to the relaxed Peaceman-Rachford Splitting (R-PRS) operator which, historically, has been introduced in the literature to find the zeros of sum of functions. Interestingly, making use of non expansive operator theory, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.Comment: Full version of the paper to be presented at Conference on Decision and Control (CDC) 201

    AC OPF in Radial Distribution Networks - Parts I,II

    Get PDF
    The optimal power-flow problem (OPF) has played a key role in the planning and operation of power systems. Due to the non-linear nature of the AC power-flow equations, the OPF problem is known to be non-convex, therefore hard to solve. Most proposed methods for solving the OPF rely on approximations that render the problem convex, but that may yield inexact solutions. Recently, Farivar and Low proposed a method that is claimed to be exact for radial distribution systems, despite no apparent approximations. In our work, we show that it is, in fact, not exact. On one hand, there is a misinterpretation of the physical network model related to the ampacity constraint of the lines' current flows. On the other hand, the proof of the exactness of the proposed relaxation requires unrealistic assumptions related to the unboundedness of specific control variables. We also show that the extension of this approach to account for exact line models might provide physically infeasible solutions. Recently, several contributions have proposed OPF algorithms that rely on the use of the alternating-direction method of multipliers (ADMM). However, as we show in this work, there are cases for which the ADMM-based solution of the non-relaxed OPF problem fails to converge. To overcome the aforementioned limitations, we propose an algorithm for the solution of a non-approximated, non-convex OPF problem in radial distribution systems that is based on the method of multipliers, and on a primal decomposition of the OPF. This work is divided in two parts. In Part I, we specifically discuss the limitations of BFM and ADMM to solve the OPF problem. In Part II, we provide a centralized version and a distributed asynchronous version of the proposed OPF algorithm and we evaluate its performances using both small-scale electrical networks, as well as a modified IEEE 13-node test feeder

    Integration of continuous-time dynamics in a spiking neural network simulator

    Full text link
    Contemporary modeling approaches to the dynamics of neural networks consider two main classes of models: biologically grounded spiking neurons and functionally inspired rate-based units. The unified simulation framework presented here supports the combination of the two for multi-scale modeling approaches, the quantitative validation of mean-field approaches by spiking network simulations, and an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most efficient spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. We further demonstrate the broad applicability of the framework by considering various examples from the literature ranging from random networks to neural field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation

    Optimization flow control -- I: Basic algorithm and convergence

    Get PDF
    We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Adaptation and Evaluation of the Multisplitting-Newton and Waveform Relaxation Methods Over Distributed Volatile Environments

    No full text
    International audienceThis paper presents new adaptations of two methods that solve large differential equations systems, to the grid context. The first method isbased on the Multisplitting concept and the second on the Waveform Relaxation concept. Their adaptations are implemented according to the asynchronous iteration model which is well suited to volatile architectures that suffer from high latency networks. Many experiments were conducted to evaluate and compare the accuracy and performance of both methods while solving the advection-diffusion problem over heterogeneous, distributed and volatile architectures. The JACEP2P-V2 middleware provided the fault tolerant asynchronous environment, required for these experiments
    • …
    corecore