2,794 research outputs found

    Stochastic Modeling and Estimation of Wireless Channels with Application to Ultra Wide Band Systems

    Get PDF
    This thesis is concerned with modeling of both space and time variations of Ultra Wide Band (UWB) indoor channels. The most common empirically determined amplitude distribution in many UWB environments is Nakagami distribution. The latter is generalized to stochastic diffusion processes which capture the dynamics of UWB channels. In contrast with the traditional models, the statistics of the proposed models are shown to be time varying, but converge in steady state to their static counterparts. System identification algorithms are used to extract various channel parameters using received signal measurement data, which are usually available at the receiver. The expectation maximization (EM) algorithm and the Kalman filter (KF) are employed in estimating channel parameters as well as the inphase and quadrature components, respectively. The proposed algorithms are recursive and therefore can be implemented in real time. Further, sufficient conditions for the convergence of the EM algorithm are provided. Comparison with recursive Least-square (LS) algorithms is carried out using experimental measurements. Distributed stochastic power control algorithms based on the fixed point theorem and stochastic approximations are used to solve for the optimal transmit power problem and numerical results are also presented. A framework which can capture the statistics of the overall received signal and a methodology to estimate parameters of the counting process based on the received signal is developed. Furthermore, second moment statistics and characteristic functions are computed explicitly and considered as an extension of Rice’s shot noise analysis. Another two important components, input design and model selection are also considered. Gel’fand n-widths and Time n-widths are used to represent the inherent error introduced by input design. Kolmogorov n-width is used to characterize the representation error introduced by model selection. In particular, it is shown that the optimal model for reducing the representation error is a finite impulse response (FIR) model and the optimal input is an impulse at the start of the observation interval

    Techniques for Wireless Channel Modeling in Harsh Environments

    Get PDF
    With the rapid growth in the networked environments for different industrial, scientific and defense applications, there is a vital need to assure the user or application a certain level of Quality of Service (QoS). Environments like the industrial environment are particularly harsh with interference from metal structures (as found in the manufacturing sector), interference generated during wireless propagation, and multipath fading of the radio frequency (RF) signal all invite novel mitigation techniques. The challenge of achieving the benefits like improved energy efficiency using wireless is closely coupled with maintaining network QoS requirements. Assessment and management of QoS needs to occur, allowing the network to adapt to changes in the RF, information, and operational environments. The capacity to adapt is paramount to maintaining the required operational performance (throughput, latency, reliability and security). This thesis address the need for accurate radio channel modeling techniques to improve the performance of the wireless communication systems. Multiple different channel modeling techniques are considered including statistical models, ray tracing techniques, finite time-difference technique, transmission line matrix method (TLM), and stochastic differential equation-based (SDE) dynamic channel models. Measurement of ambient RF is performed at several harsh industrial environments to demonstrate the existence of uncertainty in channel behavior. Comparison of various techniques is performed with metrics including accuracy, applicability, and computational efficiency. SDE- and TLM-based methods are validated using indoor and outdoor measurements. Fast, accurate techniques for modeling multipath fading in harsh environments is explored. Application of dynamic channel models is explored for improving QoS of wireless communication system. The TLM-based models provide accurate site-specific path loss calculations taking into consideration materials and propagation characteristics of propagating environment. The validation studies confirm the technique is comparable with existing channel models. The TLM-based channel models is extended to compute the site-specific multipath characteristics of the radio channel eliminating the need for experimental measurement. The TLM-based simulator is also integrated with packet-level network simulator to perform end to end-to-end site specific calculation of wireless network performance. The SDE-channel models provide accurate online estimations of the channel performance along with accurate one-step prediction of the signal strength. The validation studies confirm the accuracy of the technique. Application of the SDE-based models for adaptive antenna control is formulated using online recursive estimation

    Stochastic Signal Processing and Power Control for Wireless Communication Systems

    Get PDF
    This dissertation is concerned with dynamical modeling, estimation and identification of wireless channels from received signal measurements. Optimal power control algorithms, mobile location and velocity estimation methods are developed based on the proposed models. The ultimate performance limits of any communication system are determined by the channel it operates in. In this dissertation, we propose new stochastic wireless channel models which capture both the space and time variations of wireless systems. The proposed channel models are based on stochastic differential equations (SDEs) driven by Brownian motions. These models are more realistic than the time invariant models encountered in the literature which do not capture and track the time varying characteristics of the propagation environment. The statistics of the proposed models are shown to be time varying, and converge in steady state to their static counterparts. Cellular and ad hoc wireless channel models are developed. In urban propagation environment, the parameters of the channel models can be determined from approximating the band-limited Doppler power spectral density (DPSD) by rational transfer functions. However, since the DPSD is not available on-line, a filterbased expectation maximization algorithm and Kalman filter to estimate the channel parameters and states, respectively, are proposed. The algorithm is recursive allowing the inphase and quadrature components and parameters to be estimated on-line from received signal measurements. The algorithms are tested using experimental data, and the results demonstrate the method’s viability for both cellular and ad hoc networks. Power control increases system capacity and quality of communications, and reduces battery power consumption. A stochastic power control algorithm is developed using the so-called predictable power control strategies. An iterative distributed algorithm is then deduced using stochastic approximations. The latter only requires each mobile to know its received signal to interference ratio at the receiver

    Channel Estimation for Diffusive Molecular Communications

    Full text link
    In molecular communication (MC) systems, the \textit{expected} number of molecules observed at the receiver over time after the instantaneous release of molecules by the transmitter is referred to as the channel impulse response (CIR). Knowledge of the CIR is needed for the design of detection and equalization schemes. In this paper, we present a training-based CIR estimation framework for MC systems which aims at estimating the CIR based on the \textit{observed} number of molecules at the receiver due to emission of a \textit{sequence} of known numbers of molecules by the transmitter. Thereby, we distinguish two scenarios depending on whether or not statistical channel knowledge is available. In particular, we derive maximum likelihood (ML) and least sum of square errors (LSSE) estimators which do not require any knowledge of the channel statistics. For the case, when statistical channel knowledge is available, the corresponding maximum a posteriori (MAP) and linear minimum mean square error (LMMSE) estimators are provided. As performance bound, we derive the classical Cramer Rao (CR) lower bound, valid for any unbiased estimator, which does not exploit statistical channel knowledge, and the Bayesian CR lower bound, valid for any unbiased estimator, which exploits statistical channel knowledge. Finally, we propose optimal and suboptimal training sequence designs for the considered MC system. Simulation results confirm the analysis and compare the performance of the proposed estimation techniques with the respective CR lower bounds.Comment: to be appeared in IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1510.0861

    A Sliding Correlator Channel Sounder for Ultra-Wideband Measurements

    Get PDF
    This body of work forms a detailed and comprehensive guide for those interested in performing broadband wireless channel measurements. Discussion addresses the theoretical and practical aspects of designing and implementing a sliding correlator channel sounder, as well as how such a system may be used to measure and model the ultra-wideband wireless channel. The specific contributions of this work are as follows: Developed a systematic methodology for designing optimal sliding correlator-based channel sounders. Constructed a UWB channel sounder based upon a 17-bit LFSR that attained 1.66 ns of temporal resolution and 34 dB of dynamic range. Performed an exemplary measurement campaign of the UWB channel from which UWB angular spreads and RMS delay spreads are reported. The design procedure developed in Chapter 3 will allow researchers to build optimal channel sounders for investigating next-generation wireless channels. Chapter 4 s discussion addresses the real-world challenges of constructing a high performance sliding correlator channel sounder. Finally, the measurement campaign discussed in Chapter 5 outlines a procedure for investigating the spatio-temporal characteristics of the wireless channel and provides some of the first examples of UWB angular spread measurements.M.S.Committee Chair: Durgin, Gregory; Committee Member: Ingram, Mary Ann; Committee Member: Smith, Whi

    Conception et évaluation de nouvelles méthodes pour améliorer les performances des réseaux de nano-communication

    Get PDF
    Abstract : The field of nanotechnology has undergone very rapid and fascinating development in recent years. This rapid and impressive advance has led to new applications of nanotechnology in the biomedical and military industries, making it a key area of research in multidisciplinary fields. However, the individual processing capacity of nanodevices is very limited, hence the need to design nanonetworks that allow the nanodevices to share information and to cooperate with each other. There are two solutions to establish a nanocommunication system: either by adapting the classical electromagnetic communication to the requirements of nano scale, or by using biological nanosystems inspired by nature such as the molecular communication proposed in the literature. In this thesis, we are interested in the second solution, which is exploiting the potential of biological nanosystems used by nature since billions of years to design biocompatible nanonetworks that can be used inside the human body for medical applications. Nevertheless, the use of this new paradigm is not without challenges. The very low achievable throughput and the Inter-Symbol Interference (ISI) are the most influential problems on the quality of molecular communication. The main objective of this thesis is to design and evaluate new methods inspired by nature in order to enhance the performance of nano-communication systems. To do this, the work is divided into three main parts. In the first part, we enhance the performance of molecular communication by proposing a new method that uses a photolysis-reaction instead of using enzyme to better attenuate ISI. We also propose an optimization of the receiver used in MIMO systems by judiciously choosing the parameters used in its design to reduce the influence of path loss on the quality of the system. The second part proposes a new wired nano-communication system based on self-assembled polymers that build an electrically conductive nanowire to connect the nanodevices to each other. The use of electrons as information carriers drastically increases the achievable throughput and reduces the delay. We study the dynamic process of self-assembly of the nanowire and we propose a bio-inspired receiver that detects the electrons sent through the conductive nanowire and converts them into a blue light. The third part applies the proposed wired nano-communication system to design an architecture ofWired Ad hoc NanoNETworks (WANNET) with a physical layer, Medium Acess Control (MAC) layer and application layer. We also calculate the maximum throughput and we evaluate the performance of the system.Le domaine des nanotechnologies a connu un développement très rapide et fascinant ces dernières années. Cette avancée rapide et impressionnante a conduit à de nouvelles applications dans les industries biomédicale et militaire, ce qui en fait un champ clé de recherche dans des domaines multidisciplinaires. Cependant, la capacité de traitement individuelle des nanodispositifs est très limitée, d'où la nécessité de concevoir des nanoréseaux qui permettent aux nanodispositifs de partager des informations et de coopérer entre eux. Il existe deux solutions pour mettre en place un système de nano-communication: soit en adaptant la communication électromagnétique classiques aux exigences de la nano échelle, soit en utilisant des nanosystèmes inspirés de la nature comme la communication moléculaire. Dans cette thèse, nous nous intéressons à la deuxième solution, qui exploite le potentiel des nanosystèmes biologiques utilisés par la nature depuis des milliards d'années pour concevoir des nanoréseaux biocompatibles pouvant être utilisés à l'intérieur du corps humain pour des applications médicales. Néanmoins, l'utilisation de ce nouveau paradigme n'est pas sans défis. Le très faible débit réalisable et l'Interférence Entre Symboles (IES) sont les problèmes les plus influents sur la qualité de la communication moléculaire. L'objectif principal de cette thèse est de concevoir et d'évaluer de nouvelles méthodes inspirées de la nature afin d'améliorer les performances des systèmes de nano-communication. Pour ce faire, le travail est divisé en trois parties principales. Dans la première partie, nous améliorons les performances de la communication moléculaire en proposant une nouvelle méthode qui utilise une réaction de photolyse pour mieux atténuer l'IES. Nous proposons également une optimisation du receveur utilisé dans les systèmes MIMO en choisissant judicieusement les paramètres utilisés dans sa conception pour réduire l'influence de l'atténuation de trajet sur la qualité du système. La deuxième partie propose un nouveau système de nano-communication filaire basé sur des polymères auto-assemblés qui construisent un nanofil électriquement conducteur pour connecter les nanodispositifs les uns aux autres. L'utilisation d'électrons comme supports d'informations augmente considérablement le débit réalisable et réduit le délai. Nous étudions le processus dynamique d'auto-assemblage du nanofil et nous proposons un receveur bio-inspiré qui détecte les électrons envoyés et les convertit en une lumière bleue. La troisième partie applique le système de nano-communication filaire proposé pour concevoir une architecture d'un nanoréseau ad hoc filaire (Wired Ad hoc NanoNETworks) WANNET avec une couche physique, une couche de contrôle d'accès moyen (Medium Access Control) MAC et une couche d'application. Nous calculons également le débit maximum et nous évaluons les performances du système

    Improving Receiver Performance of Diffusive Molecular Communication with Enzymes

    Full text link
    This paper studies the mitigation of intersymbol interference in a diffusive molecular communication system using enzymes that freely diffuse in the propagation environment. The enzymes form reaction intermediates with information molecules and then degrade them so that they cannot interfere with future transmissions. A lower bound expression on the expected number of molecules measured at the receiver is derived. A simple binary receiver detection scheme is proposed where the number of observed molecules is sampled at the time when the maximum number of molecules is expected. Insight is also provided into the selection of an appropriate bit interval. The expected bit error probability is derived as a function of the current and all previously transmitted bits. Simulation results show the accuracy of the bit error probability expression and the improvement in communication performance by having active enzymes present.Comment: 13 pages, 8 figures, 1 table. To appear in IEEE Transactions on Nanobioscience (submitted January 22, 2013; minor revision October 16, 2013; accepted December 4, 2013
    • …
    corecore