6,519 research outputs found

    Testing probability distributions underlying aggregated data

    Full text link
    In this paper, we analyze and study a hybrid model for testing and learning probability distributions. Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles to the unknown distribution DD over [n][n]. More precisely, we define both the dual and cumulative dual access models, in which the algorithm AA can both sample from DD and respectively, for any i[n]i\in[n], - query the probability mass D(i)D(i) (query access); or - get the total mass of {1,,i}\{1,\dots,i\}, i.e. j=1iD(j)\sum_{j=1}^i D(j) (cumulative access) These two models, by generalizing the previously studied sampling and query oracle models, allow us to bypass the strong lower bounds established for a number of problems in these settings, while capturing several interesting aspects of these problems -- and providing new insight on the limitations of the models. Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks remain hard even with this additional power

    Vickrey Auctions for Irregular Distributions

    Full text link
    The classic result of Bulow and Klemperer \cite{BK96} says that in a single-item auction recruiting one more bidder and running the Vickrey auction achieves a higher revenue than the optimal auction's revenue on the original set of bidders, when values are drawn i.i.d. from a regular distribution. We give a version of Bulow and Klemperer's result in settings where bidders' values are drawn from non-i.i.d. irregular distributions. We do this by modeling irregular distributions as some convex combination of regular distributions. The regular distributions that constitute the irregular distribution correspond to different population groups in the bidder population. Drawing a bidder from this collection of population groups is equivalent to drawing from some convex combination of these regular distributions. We show that recruiting one extra bidder from each underlying population group and running the Vickrey auction gives at least half of the optimal auction's revenue on the original set of bidders

    Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication

    Get PDF
    We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. In more detail, we propose a new selection complexity metric χ\chi, defined for algorithm A{\cal A} such that χ(A)=b+log\chi({\cal A}) = b + \log \ell, where bb is the number of memory bits used by each agent and \ell bounds the fineness of available probabilities (agents use probabilities of at least 1/21/2^\ell). In this paper, we study the trade-off between the standard performance metric of speed-up, which measures how the expected time to find the target improves with nn, and our new selection metric. In particular, consider nn agents searching for a treasure located at (unknown) distance DD from the origin (where nn is sub-exponential in DD). For this problem, we identify loglogD\log \log D as a crucial threshold for our selection complexity metric. We first prove a new upper bound that achieves a near-optimal speed-up of (D2/n+D)2O()(D^2/n +D) \cdot 2^{O(\ell)} for χ(A)3loglogD+O(1)\chi({\cal A}) \leq 3 \log \log D + O(1). In particular, for O(1)\ell \in O(1), the speed-up is asymptotically optimal. By comparison, the existing results for this problem [Feinerman et al.] that achieve similar speed-up require χ(A)=Ω(logD)\chi({\cal A}) = \Omega(\log D). We then show that this threshold is tight by describing a lower bound showing that if χ(A)<loglogDω(1)\chi({\cal A}) < \log \log D - \omega(1), then with high probability the target is not found within D2o(1)D^{2-o(1)} moves per agent. Hence, there is a sizable gap to the straightforward Ω(D2/n+D)\Omega(D^2/n + D) lower bound in this setting.Comment: appears in PODC 201

    Robust Coin Flipping

    Full text link
    Alice seeks an information-theoretically secure source of private random data. Unfortunately, she lacks a personal source and must use remote sources controlled by other parties. Alice wants to simulate a coin flip of specified bias α\alpha, as a function of data she receives from pp sources; she seeks privacy from any coalition of rr of them. We show: If p/2r<pp/2 \leq r < p, the bias can be any rational number and nothing else; if 0<r<p/20 < r < p/2, the bias can be any algebraic number and nothing else. The proof uses projective varieties, convex geometry, and the probabilistic method. Our results improve on those laid out by Yao, who asserts one direction of the r=1r=1 case in his seminal paper [Yao82]. We also provide an application to secure multiparty computation.Comment: 22 pages, 1 figur
    corecore