199 research outputs found

    Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature

    Get PDF
    We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 − c/e)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c)-approximation for maximization and a 1/(1 − c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem

    Performance guarantees for greedy maximization of non-submodular controllability metrics

    Full text link
    A key problem in emerging complex cyber-physical networks is the design of information and control topologies, including sensor and actuator selection and communication network design. These problems can be posed as combinatorial set function optimization problems to maximize a dynamic performance metric for the network. Some systems and control metrics feature a property called submodularity, which allows simple greedy algorithms to obtain provably near-optimal topology designs. However, many important metrics lack submodularity and therefore lack provable guarantees for using a greedy optimization approach. Here we show that performance guarantees can be obtained for greedy maximization of certain non-submodular functions of the controllability and observability Gramians. Our results are based on two key quantities: the submodularity ratio, which quantifies how far a set function is from being submodular, and the curvature, which quantifies how far a set function is from being supermodular
    • …
    corecore