13 research outputs found

    On Signaling-Free Failure Dependent Restoration in All-Optical Mesh Networks

    Get PDF
    Failure dependent protection (FDP) is known to achieve optimal capacity efficiency among all types of protection, at the expense of longer recovery time and more complicated signaling overhead. This particularly hinders the usage of FDP in all-optical mesh networks. As a remedy, the paper investigates a new restoration framework that enables all-optical fault management and device configuration via state-of-the-art failure localization techniques, such that the FDP restoration process. It can be implemented without relying on any control plane signaling. With the proposed restoration framework, a novel spare capacity allocation problem is defined, and is further analyzed on circulant topologies for any single link failure, aiming to gain a solid understanding of the problem. By allowing reuse of monitoring resources for restoration capacity, we are particularly interested in the monitoring resource hidden property where less or even no monitoring resources are consumed as more working traffic is in place. To deal with general topologies, we introduce a novel heuristic approach to the proposed spare capacity allocation problem, which comprises a generic FDP survivable routing scheme followed by a novel monitoring resource allocation method. Extensive simulation is conducted to examine the proposed scheme and verify the proposed restoration framework

    Fault Localization in All-Optical Mesh Networks

    Get PDF
    Fault management is a challenging task in all-optical wavelength division multiplexing (WDM) networks. However, fast fault localization for shared risk link groups (SRLGs) with multiple links is essential for building a fully survival and functional transparent all-optical mesh network. Monitoring trail (m-trail) technology is an effective approach to achieve the goal, whereby a set of m-trails are derived for unambiguous fault localization (UFL). However, an m-trail traverses through a link by utilizing a dedicated wavelength channel (WL), causing a significant amount of resource consumption. In addition, existing m-trail methods incur long and variable alarm dissemination delay. We introduce a novel framework of real-time fault localization in all-optical WDM mesh networks, called the monitoring-burst (m-burst), which aims at initiating a balanced trade-off between consumed monitoring resources and fault localization latency. The m-burst framework has a single monitoring node (MN) and requires one WL in each unidirectional link if the link is traversed by any m-trail. The MN launches short duration optical bursts periodically along each m-trail to probe the links of the m-trail. Bursts along different m-trails are kept non-overlapping through each unidirectional link by scheduling burst launching times from the MN and multiplexing multiple bursts, if any, traversing the link. Thus, the MN can unambiguously localize the failed links by identifying the lost bursts without incurring any alarm dissemination delay. We have proposed several novel m-trail allocation, burst launching time scheduling, and node switch fabric configuration schemes. Numerical results show that the schemes, when deployed in the m-burst framework, are able to localize single-link and multi-link SRLG faults unambiguously, with reasonable fault localization latency, by using at most one WL in each unidirectional link. To reduce the fault localization latency further, we also introduce a novel methodology called nested m-trails. At first, mesh networks are decomposed into cycles and trails. Each cycle (trail) is realized as an independent virtual ring (linear) network using a separate pair of WLs (one WL in each direction) in each undirected link traversed by the cycle (trail). Then, sets of m-trails, i.e., nested m-trails, derived in each virtual network are deployed independently in the m-burst framework for ring (linear) networks. As a result, the fault localization latency is reduced significantly. Moreover, the application of nested m-trails in adaptive probing also reduces the number of sequential probes significantly. Therefore, practical deployment of adaptive probing is now possible. However, the WL consumption of the nested m-trail technique is not limited by one WL per unidirectional link. Thus, further investigation is needed to reduce the WL consumption of the technique.1 yea

    On Integrating Failure Localization with Survivable Design

    Get PDF
    In this thesis, I proposed a novel framework of all-optical failure restoration which jointly determines network monitoring plane and spare capacity allocation in the presence of either static or dynamic traffic. The proposed framework aims to enable a general shared protection scheme to achieve near optimal capacity efficiency as in Failure Dependent Protection(FDP) while subject to an ultra-fast, all-optical, and deterministic failure restoration process. Simply put, Local Unambiguous Failure Localization(L-UFL) and FDP are the two building blocks for the proposed restoration framework. Under L-UFL, by properly allocating a set of Monitoring Trails (m-trails), a set of nodes can unambiguously identify every possible Shared Risk Link Group (SRLG) failure merely based on its locally collected Loss of Light(LOL) signals. Two heuristics are proposed to solve L-UFL, one of which exclusively deploys Supervisory Lightpaths (S-LPs) while the other jointly considers S-LPs and Working Lightpaths (W-LPs) for suppressing monitoring resource consumption. Thanks to the ``Enhanced Min Wavelength Max Information principle'', an entropy based utility function, m-trail global-sharing and other techniques, the proposed heuristics exhibit satisfactory performance in minimizing the number of m-trails, Wavelength Channel(WL) consumption and the running time of the algorithm. Based on the heuristics for L-UFL, two algorithms, namely MPJD and DJH, are proposed for the novel signaling-free restoration framework to deal with static and dynamic traffic respectively. MPJD is developed to determine the Protection Lightpaths (P-LPs) and m-trails given the pre-computed W-LPs while DJH jointly implements a generic dynamic survivable routing scheme based on FDP with an m-trail deployment scheme. For both algorithms, m-trail deployment is guided by the Necessary Monitoring Requirement (NMR) defined at each node for achieving signaling-free restoration. Extensive simulation is conducted to verify the performance of the proposed heuristics in terms of WL consumption, number of m-trails, monitoring requirement, blocking probability and running time. In conclusion, the proposed restoration framework can achieve all-optical and signaling-free restoration with the help of L-UFL, while maintaining high capacity efficiency as in FDP based survivable routing. The proposed heuristics achieve satisfactory performance as verified by the simulation results

    Signaling Free Localization of Node Failures in All-Optical Networks

    Get PDF

    Signaling Free Localization of Node Failures in All-Optical Networks

    Get PDF

    Optical layer monitoring schemes for fast link failure localization in all-optical networks

    Get PDF
    Optical layer monitoring and fault localization serves as a critical functional module in the control and management of optical networks. An efficient monitoring scheme aims at minimizing not only the hardware cost required for 100{%} link failure localization, but also the number of redundant alarms and monitors such that the network fault management can be simplified as well. In recent years, several optical layer monitoring schemes were reported for fast and efficient link failure localization, including simple, non-simple monitoring cycle (m-cycle) and monitoring trail (m-trail). Optimal ILP (Integer Linear Program) models and heuristics were also proposed with smart design philosophy on flexibly trading off different objectives. This article summarizes those innovative ideas and methodologies with in-depth analysis on their pros and cons. We also provide insights on future research topics in this area, as well as possible ways for extending the new failure localization approaches to other network applications. © 2005 IEEE.published_or_final_versio

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Super monitor design for fast link failure localization in all-optical networks

    Get PDF
    Monitoring cycle (m-cycle) based design is cost efficient for fast link failure detection and localization in all-optical networks. An m-cycle is an optical loop-back pre-cross-connection of a supervisory wavelength with a dedicated monitor. Generally, a simple monitor is placed at an arbitrary node of an m-cycle for supervision. In this paper, we propose a novel monitor structure, called super monitor. A super monitor is used to supervise multiple intersecting cycles and placed at the intersection node. For a given set of m-cycles, we use super monitors to replace some (or all) simple monitors that originally locate in the set. Two major advantages of the super monitor are: 1) it has lower hardware cost; 2) the collocation of monitoring devices reduces the management cost simultaneously. Besides, the super monitor does not incur additional bandwidth cost. We formulate an integer linear program (ILP) to solve the problem of monitor placement. Numerical results show that our ILP can efficiently place the monitors with a significantly minimized monitoring cost. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Communications (ICC 2011), Kyoto, Japan, 5-9 June 2011. In Proceedings of the IEEE ICC, 2011, p. 1-

    Failure Localization Aware Protection in All-Optical Networks

    Get PDF
    The recent development of optical signal processing and switching makes the all-optical networks a potential candidate for the underlying transmission system in the near future. However, despite its higher transmission data rate and efficiency, the lack of optical-electro-optical (OEO) conversions makes fault management a challenge. A single fiber cut can interrupt several connections, disrupting many services which results in a massive loss of data. With the ever-growing demand for time-sensitive applications, the ability to maintain service continuity in communication networks has only been growing in importance. In order to guarantee network survivability, fast fault localization and fault recovery are essential. Conventional monitoring-trail (m-trail) based schemes can unambiguously localize link failures. However, the deployment of m-trail requires extra transceivers and wavelengths dedicated to monitoring the link state. Non-negligible overhead makes m-trail schemes neither scalable nor practicable. In this thesis, we propose two Failure Localization Aware (FLA) routing schemes to aid failure localization. When a link fails, all traversing lightpaths become dark, and the transceiver at the end node of each interrupted ligthpath issues an alarm signal to report the path failure. By correlating the information of all affected and unaffected paths, it is possible to narrow down the number of possible fault locations to just a few possible locations. However, without the assistance of dedicated supervisory lightpaths, and based solely on the alarm generated by the interrupted lightpaths, ambiguity in failure localization may be unavoidable. Hence, we design a Failure Localization Aware Routing and Wavelength Assignment (FLA-RWA) scheme, the Least Ambiguous Path (LAP) routing scheme, to dynamically allocate connection requests with minimum ambiguity in the localization of a link failure. The performance of the proposed heuristic is evaluated and compared with traditional RWA algorithms via network simulations. The results show that the proposed LAP algorithm achieves the lowest ambiguity among all examined schemes, at the cost of slightly higher wavelength consumption than the alternate shortest path scheme. We also propose a Failure Localization Aware Protection (FLA-P) scheme that is based on the idea of also monitoring the protection paths in a system with path protection for failure localization. The Least Ambiguous Protection Path (LAPP) routing algorithm arranges the protection path routes with the objective of minimizing the ambiguity in failure localization. We evaluate and compare the ambiguity in fault localization when monitoring only the working paths and when monitoring both working and protection paths. We also compare the performance of protection paths with different schemes in regards to fault localization
    corecore