1,469 research outputs found

    Reconstruction Codes for DNA Sequences with Uniform Tandem-Duplication Errors

    Full text link
    DNA as a data storage medium has several advantages, including far greater data density compared to electronic media. We propose that schemes for data storage in the DNA of living organisms may benefit from studying the reconstruction problem, which is applicable whenever multiple reads of noisy data are available. This strategy is uniquely suited to the medium, which inherently replicates stored data in multiple distinct ways, caused by mutations. We consider noise introduced solely by uniform tandem-duplication, and utilize the relation to constant-weight integer codes in the Manhattan metric. By bounding the intersection of the cross-polytope with hyperplanes, we prove the existence of reconstruction codes with greater capacity than known error-correcting codes, which we can determine analytically for any set of parameters.Comment: 11 pages, 2 figures, Latex; version accepted for publicatio

    Geometric approach to sampling and communication

    Full text link
    Relationships that exist between the classical, Shannon-type, and geometric-based approaches to sampling are investigated. Some aspects of coding and communication through a Gaussian channel are considered. In particular, a constructive method to determine the quantizing dimension in Zador's theorem is provided. A geometric version of Shannon's Second Theorem is introduced. Applications to Pulse Code Modulation and Vector Quantization of Images are addressed.Comment: 19 pages, submitted for publicatio

    Neural Network Coding

    Full text link
    In this paper we introduce Neural Network Coding(NNC), a data-driven approach to joint source and network coding. In NNC, the encoders at each source and intermediate node, as well as the decoder at each destination node, are neural networks which are all trained jointly for the task of communicating correlated sources through a network of noisy point-to-point links. The NNC scheme is application-specific and makes use of a training set of data, instead of making assumptions on the source statistics. In addition, it can adapt to any arbitrary network topology and power constraint. We show empirically that, for the task of transmitting MNIST images over a network, the NNC scheme shows improvement over baseline schemes, especially in the low-SNR regime

    Design of a hybrid measure for image similarity: A statistical, algebraic, and information-theoretic approach

    Get PDF
    Image similarity or distortion assessment is fundamental to a wide range of applications throughout the field of image processing and computer vision. Many image similarity measures have been proposed to treat specific types of image distortions. Most of these measures are based on statistical approaches, such as the classic SSIM. In this paper, we present a different approach by interpolating the information theory with the statistic, because the information theory has a high capability to predict the relationship among image intensity values. Our unique hybrid approach incorporates information theory (Shannon entropy) with a statistic (SSIM), as well as a distinctive structural feature provided by edge detection (Canny). Correlative and algebraic structures have also been utilized. This approach combines the best features of Shannon entropy and a joint histogram of the two images under test, and SSIM with edge detection as a structural feature. The proposed method (ISSM) has been tested versus SSIM and FSIM under Gaussian noise, where good results have been obtained even under a wide range of PSNR. Simulation results using the IVC and TID2008 image databases show that the proposed approach outperforms the SSIM and FSIM approaches in similarity and recognition of the image

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-two research projects and a list of publications.Sanders, a Lockheed-Martin Corporation Contract BZ4962U.S. Army Research Laboratory Contract DAAL01-96-2-0001U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-96-1-0930National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Science Foundation Graduate Research FellowshipAT&T Bell Laboratories Graduate Research FellowshipU.S. Army Research Laboratory Contract DAAL01-96-2-0002National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Minimal Information Exchange for Image Registration

    Get PDF
    In this paper we consider the problem of estimating the relative shift, scale and rotation between two images X and Y that are available to two users, respectively A and B, connected through a channel. User A is asked to send B some specifically selected minimal description of image X that will allow B to recover the relative shift, rotation and scale between X and Y. The approach is based on a distributed encoding technique applied to the Discrete Fourier Transform phase and to the Fourier-Mellin transform of the images

    Degraded Visual Environment Tracker

    Get PDF
    Compressive Sensing (CS) has proven its ability to reduce the number of measurements required to reproduce images with similar quality to those reconstructed by observing the Shannon-Nyquest sampling criteria. By exploiting spatial redundancies, it was shown that CS can be used to denoise and enhance image quality. In this thesis we propose a method that incorporates an efficient use of CS to locate a specific object in zero-visibility environments. This method was developed after multiple implementations of dictionary learning, reconstruction, detection, and tracking algorithms in order to identify the shortcomings of existing techniques and enhance our results. We show that with the use of an over-complete dictionary of the target our technique can perceive the location of the target from hidden information in the scene. This thesis will summarize the previously implemented algorithms, detail the shortcomings evident in their outputs, explain our setups, and present quantified results to support its efficacy in the results section
    • …
    corecore