89,869 research outputs found

    Fast gradient method for Low-Rank Matrix Estimation

    Full text link
    Projected gradient descent and its Riemannian variant belong to a typical class of methods for low-rank matrix estimation. This paper proposes a new Nesterov's Accelerated Riemannian Gradient algorithm by efficient orthographic retraction and tangent space projection. The subspace relationship between iterative and extrapolated sequences on the low-rank matrix manifold provides a computational convenience. With perturbation analysis of truncated singular value decomposition and two retractions, we systematically analyze the local convergence of gradient algorithms and Nesterov's variants in the Euclidean and Riemannian settings. Theoretically, we estimate the exact rate of local linear convergence under different parameters using the spectral radius in a closed form and give the optimal convergence rate and the corresponding momentum parameter. When the parameter is unknown, the adaptive restart scheme can avoid the oscillation problem caused by high momentum, thus approaching the optimal convergence rate. Extensive numerical experiments confirm the estimations of convergence rate and demonstrate that the proposed algorithm is competitive with first-order methods for matrix completion and matrix sensing.Comment: Accepted for publication in Journal of Scientific Computin

    Bayesian Matrix Completion via Adaptive Relaxed Spectral Regularization

    Full text link
    Bayesian matrix completion has been studied based on a low-rank matrix factorization formulation with promising results. However, little work has been done on Bayesian matrix completion based on the more direct spectral regularization formulation. We fill this gap by presenting a novel Bayesian matrix completion method based on spectral regularization. In order to circumvent the difficulties of dealing with the orthonormality constraints of singular vectors, we derive a new equivalent form with relaxed constraints, which then leads us to design an adaptive version of spectral regularization feasible for Bayesian inference. Our Bayesian method requires no parameter tuning and can infer the number of latent factors automatically. Experiments on synthetic and real datasets demonstrate encouraging results on rank recovery and collaborative filtering, with notably good results for very sparse matrices.Comment: Accepted to AAAI 201

    On the Power of Adaptivity in Matrix Completion and Approximation

    Full text link
    We consider the related tasks of matrix completion and matrix approximation from missing data and propose adaptive sampling procedures for both problems. We show that adaptive sampling allows one to eliminate standard incoherence assumptions on the matrix row space that are necessary for passive sampling procedures. For exact recovery of a low-rank matrix, our algorithm judiciously selects a few columns to observe in full and, with few additional measurements, projects the remaining columns onto their span. This algorithm exactly recovers an n×nn \times n rank rr matrix using O(nrμ0log2(r))O(nr\mu_0 \log^2(r)) observations, where μ0\mu_0 is a coherence parameter on the column space of the matrix. In addition to completely eliminating any row space assumptions that have pervaded the literature, this algorithm enjoys a better sample complexity than any existing matrix completion algorithm. To certify that this improvement is due to adaptive sampling, we establish that row space coherence is necessary for passive sampling algorithms to achieve non-trivial sample complexity bounds. For constructing a low-rank approximation to a high-rank input matrix, we propose a simple algorithm that thresholds the singular values of a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly as good as the best rank-rr approximation using O(nrμlog2(n))O(nr\mu \log^2(n)) samples, where μ\mu is a slightly different coherence parameter on the matrix columns. Again we eliminate assumptions on the row space
    corecore