615 research outputs found

    AFFECT-PRESERVING VISUAL PRIVACY PROTECTION

    Get PDF
    The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this dissertation, we propose to balance the privacy protection and the utility of the data by preserving the privacy-insensitive information, such as pose and expression, which is useful in many applications involving visual understanding. The Intellectual Merits of the dissertation include a novel framework for visual privacy protection by manipulating facial image and body shape of individuals, which: (1) is able to conceal the identity of individuals; (2) provide a way to preserve the utility of the data, such as expression and pose information; (3) balance the utility of the data and capacity of the privacy protection. The Broader Impacts of the dissertation focus on the significance of privacy protection on visual data, and the inadequacy of current privacy enhancing technologies in preserving affect and behavioral attributes of the visual content, which are highly useful for behavior observation in educational and medical settings. This work in this dissertation represents one of the first attempts in achieving both goals simultaneously

    Non-isometric 3D shape registration.

    Get PDF
    3D shape registration is an important task in computer graphics and computer vision. It has been widely used in the area of film industry, 3D animation, video games and AR/VR assets creation. Manually creating the 3D model of a character from scratch is tedious and time consuming, and it can only be completed by professional trained artists. With the development of 3D geometry acquisition technology, it becomes easier and cheaper to capture high-resolution and highly detailed 3D geometries. However, the scanned data are often incomplete or noisy and therefore cannot be employed directly. To deal with the above two problems, one typical and efficient solution is to deform an existing high-quality model (template) to fit the scanned data (target). Shape registration as an essential technique to do so has been arousing intensive attention. In last decades, various shape registration approaches have been proposed for accurate template fitting. However, there are still some remaining challenges. It is well known that the template can be largely different with the target in respect of size and pose. With the large (usually non-isometric) deformation between them, the shear distortion can easily occur, which may lead to poor results, such as degenerated triangles, fold-overs. Before deforming the template towards the target, reliable correspondences between them should be found first. Incorrect correspondences give the wrong deformation guidance, which can also easily produce fold-overs. As mentioned before, the target always comes with noise. This is the part we want to filter out and try not to fit the template on it. Hence, non-isometric shape registration robust to noise is highly desirable in the scene of geometry modelling from the scanned data. In this PhD research, we address existing challenges in shape registration, including how to prevent the deformation distortion, how to reduce the foldover occurrence and how to deal with the noise in the target. Novel methods including consistent as-similar as-possible surface deformation and robust Huber-L1 surface registration are proposed, which are validated through experimental comparison with state-of-the-arts. The deformation technique plays an important role in shape registration. In this research, a consistent as similar-as-possible (CASAP) surface deformation approach is proposed. Starting from investigating the continuous deformation energy, we analyse the existing term to make the discrete energy converge to the continuous one, whose property we called as energy consistency. Based on the deformation method, a novel CASAP non-isometric surface registration method is proposed. The proposed registration method well preserves the angles of triangles in the template surface so that least distortion is introduced during the surface deformation and thus reduce the risk of fold-over and self-intersection. To reduce the noise influence, a Huber-L1 based non-isometric surface registration is proposed, where a Huber-L1 regularized model constrained on the transformation variation and position difference. The proposed method is robust to noise and produces piecewise smooth results while still preserving fine details on the target. We evaluate and validate our methods through extensive experiments, whose results have demonstrated that the proposed methods in this thesis are more accurate and robust to noise in comparison of the state-of-the arts and enable us to produce high quality models with little efforts

    Mesh-to-raster based non-rigid registration of multi-modal images

    Full text link
    Region of interest (ROI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from CAT scanners as pixel or voxel data. Previously, we presented a 2D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster (M2R) framework to register ROIs in multi-modal images; (ii) a 3D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2D using ground truth provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem where the objective consists of a data term, which involves the signed distance function of the ROI from the reference image, and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The ROI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit (ITK) and Elastix

    Analysis and Manipulation of Repetitive Structures of Varying Shape

    Get PDF
    Self-similarity and repetitions are ubiquitous in man-made and natural objects. Such structural regularities often relate to form, function, aesthetics, and design considerations. Discovering structural redundancies along with their dominant variations from 3D geometry not only allows us to better understand the underlying objects, but is also beneficial for several geometry processing tasks including compact representation, shape completion, and intuitive shape manipulation. To identify these repetitions, we present a novel detection algorithm based on analyzing a graph of surface features. We combine general feature detection schemes with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect recurring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous region growing is applied to verify that the actual data supports the patterns detected in the feature graphs. We introduce our graph based detection algorithm on the example of rigid repetitive structure detection. Then we extend the approach to allow more general deformations between the detected parts. We introduce subspace symmetries whereby we characterize similarity by requiring the set of repeating structures to form a low dimensional shape space. We discover these structures based on detecting linearly correlated correspondences among graphs of invariant features. The found symmetries along with the modeled variations are useful for a variety of applications including non-local and non-rigid denoising. Employing subspace symmetries for shape editing, we introduce a morphable part model for smart shape manipulation. The input geometry is converted to an assembly of deformable parts with appropriate boundary conditions. Our method uses self-similarities from a single model or corresponding parts of shape collections as training input and allows the user also to reassemble the identified parts in new configurations, thus exploiting both the discrete and continuous learned variations while ensuring appropriate boundary conditions across part boundaries. We obtain an interactive yet intuitive shape deformation framework producing realistic deformations on classes of objects that are difficult to edit using repetition-unaware deformation techniques

    TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models

    Full text link
    Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.Comment: Accepted to SIGGRAPH ASIA 202

    Implicit Surfaces For Modelling Human Heads

    No full text

    FULL 3D RECONSTRUCTION OF DYNAMIC NON-RIGID SCENES: ACQUISITION AND ENHANCEMENT

    Get PDF
    Recent advances in commodity depth or 3D sensing technologies have enabled us to move closer to the goal of accurately sensing and modeling the 3D representations of complex dynamic scenes. Indeed, in domains such as virtual reality, security, surveillance and e-health, there is now a greater demand for aff ordable and flexible vision systems which are capable of acquiring high quality 3D reconstructions. Available commodity RGB-D cameras, though easily accessible, have limited fi eld-of-view, and acquire noisy and low-resolution measurements which restricts their direct usage in building such vision systems. This thesis targets these limitations and builds approaches around commodity 3D sensing technologies to acquire noise-free and feature preserving full 3D reconstructions of dynamic scenes containing, static or moving, rigid or non-rigid objects. A mono-view system based on a single RGB-D camera is incapable of acquiring full 360 degrees 3D reconstruction of a dynamic scene instantaneously. For this purpose, a multi-view system composed of several RGB-D cameras covering the whole scene is used. In the first part of this thesis, the domain of correctly aligning the information acquired from RGB-D cameras in a multi-view system to provide full and textured 3D reconstructions of dynamic scenes, instantaneously, is explored. This is achieved by solving the extrinsic calibration problem. This thesis proposes an extrinsic calibration framework which uses the 2D photometric and 3D geometric information, acquired with RGB-D cameras, according to their relative (in)accuracies, a ffected by the presence of noise, in a single weighted bi-objective optimization. An iterative scheme is also proposed, which estimates the parameters of noise model aff ecting both 2D and 3D measurements, and solves the extrinsic calibration problem simultaneously. Results show improvement in calibration accuracy as compared to state-of-art methods. In the second part of this thesis, the domain of enhancement of noisy and low-resolution 3D data acquired with commodity RGB-D cameras in both mono-view and multi-view systems is explored. This thesis extends the state-of-art in mono-view template-free recursive 3D data enhancement which targets dynamic scenes containing rigid-objects, and thus requires tracking only the global motions of those objects for view-dependent surface representation and fi ltering. This thesis proposes to target dynamic scenes containing non-rigid objects which introduces the complex requirements of tracking relatively large local motions and maintaining data organization for view-dependent surface representation. The proposed method is shown to be e ffective in handling non-rigid objects of changing topologies. Building upon the previous work, this thesis overcomes the requirement of data organization by proposing an approach based on view-independent surface representation. View-independence decreases the complexity of the proposed algorithm and allows it the flexibility to process and enhance noisy data, acquired with multiple cameras in a multi-view system, simultaneously. Moreover, qualitative and quantitative experimental analysis shows this method to be more accurate in removing noise to produce enhanced 3D reconstructions of non-rigid objects. Although, extending this method to a multi-view system would allow for obtaining instantaneous enhanced full 360 degrees 3D reconstructions of non-rigid objects, it still lacks the ability to explicitly handle low-resolution data. Therefore, this thesis proposes a novel recursive dynamic multi-frame 3D super-resolution algorithm together with a novel 3D bilateral total variation regularization to filter out the noise, recover details and enhance the resolution of data acquired from commodity cameras in a multi-view system. Results show that this method is able to build accurate, smooth and feature preserving full 360 degrees 3D reconstructions of the dynamic scenes containing non-rigid objects
    • …
    corecore