96 research outputs found

    Optically programmable gate array

    Get PDF
    The Optically Programmable Gate Array (OPGA), an optical version of a conventional FPGA, benefits from a direct parallel interface between an optical memory and a logic circuit. The OPGA utilizes a holographic memory accessed by an array of VCSELs to program its logic. An active pixel sensor array incorporated into the OPGA chip makes it possible to optically address the logic in a very short time allowing for rapid dynamic reconfiguration. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module can be made compact. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and database search

    Optoelectronic devices and packaging for information photonics

    Get PDF
    This thesis studies optoelectronic devices and the integration of these components onto optoelectronic multi chip modules (OE-MCMs) using a combination of packaging techniques. For this project, (1×12) array photodetectors were developed using PIN diodes with a GaAs/AlGaAs strained layer structure. The devices had a pitch of 250μm, operated at a wavelength of 850nm. Optical characterisation experiments of two types of detector arrays (shoe and ring) were successfully performed. Overall, the shoe devices achieved more consistent results in comparison with ring diodes, i.e. lower dark current and series resistance values. A decision was made to choose the shoe design for implementation into the high speed systems demonstrator. The (1x12) VCSEL array devices were the optical sources used in my research. This was an identical array at 250μm pitch configuration used in order to match the photodetector array. These devices had a wavelength of 850nm. Optoelectronic testing of the VCSEL was successfully conducted, which provided good beam profile analysis and I-V-P measurements of the VCSEL array. This was then implemented into a simple demonstrator system, where eye diagrams examined the systems performance and characteristics of the full system and showed positive results. An explanation was given of the following optoelectronic bonding techniques: Wire bonding and flip chip bonding with its associated technologies, i.e. Solder, gold stud bump and ACF. Also, technologies, such as ultrasonic flip chip bonding and gold micro-post technology were looked into and discussed. Experimental work implementing these methods on packaging the optoelectronic devices was successfully conducted and described in detail. Packaging of the optoelectronic devices onto the OEMCM was successfully performed. Electrical tests were successfully carried out on the flip chip bonded VCSEL and Photodetector arrays. These results verified that the devices attached on the MCM achieved good electrical performance and reliable bonding. Finally, preliminary testing was conducted on the fully assembled OE-MCMs. The aim was to initially power up the mixed signal chip (VCSEL driver), and then observe the VCSEL output

    Optically programmable gate array

    Get PDF
    The Optically Programmable Gate Array (OPGA), an optical version of a conventional FPGA, benefits from a direct parallel interface between an optical memory and a logic circuit. The OPGA utilizes a holographic memory accessed by an array of VCSELs to program its logic. An active pixel sensor array incorporated into the OPGA chip makes it possible to optically address the logic in a very short time allowing for rapid dynamic reconfiguration. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module can be made compact. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and database search

    Characterisation of a reconfigurable free space optical interconnect system for parallel computing applications and experimental validation using rapid prototyping technology

    Get PDF
    Free-space optical interconnects (FSOIs) are widely seen as a potential solution to present and future bandwidth bottlenecks for parallel processing applications. This thesis will be focused on the study of a particular FSOI system called Optical Highway (OH). The OH is a polarised beam routing system which uses Polarising Beam Splitters and Liquid Crystals (PBS/LC) assemblies to perform reconfigurable interconnection networks. The properties of the OH make it suitable for implementing different passive static networks. A technology known as Rapid Prototyping (RP) will be employed for the first time in order to create optomechanical structures at low cost and low production times. Off-theshelf optical components will also be characterised in order to implement the OH. Additionally, properties such as reconfigurability, scalability, tolerance to misalignment and polarisation losses will be analysed. The OH will be modelled at three levels: node, optical stage and architecture. Different designs will be proposed and a particular architecture, Optimised Cut-Through Ring (OCTR), will be experimentally implemented. Finally, based on this architecture, a new set of properties will be defined in order to optimise the efficiency of the optical channels

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF
    • …
    corecore