69 research outputs found

    Crosstalk in stereoscopic displays: A review

    Get PDF
    Crosstalk, also known as ghosting or leakage, is a primary factor in determining the image quality of stereoscopic three dimensional (3D) displays. In a stereoscopic display, a separate perspective view is presented to each of the observer’s two eyes in order to experience a 3D image with depth sensation. When crosstalk is present in a stereoscopic display, each eye will see a combination of the image intended for that eye, and some of the image intended for the other eye—making the image look doubled or ghosted. High levels of crosstalk can make stereoscopic images hard to fuse and lack fidelity, so it is important to achieve low levels of crosstalk in the development of high-quality stereoscopic displays. Descriptive and mathematical definitions of these terms are formalized and summarized. The mechanisms by which crosstalk occurs in different stereoscopic display technologies are also reviewed, including micropol 3D liquid crystal displays (LCDs), autostereoscopic (lenticular and parallax barrier), polarized projection, anaglyph, and time-sequential 3D on LCDs, plasma display panels and cathode ray tubes. Crosstalk reduction and crosstalk cancellation are also discussed along with methods of measuring and simulating crosstalk

    Crosstalk in stereoscopic displays

    Get PDF
    Crosstalk is an important image quality attribute of stereoscopic 3D displays. The research presented in this thesis examines the presence, mechanisms, simulation, and reduction of crosstalk for a selection of stereoscopic display technologies. High levels of crosstalk degrade the perceived quality of stereoscopic displays hence it is important to minimise crosstalk. This thesis provides new insights which are critical to a detailed understanding of crosstalk and consequently to the development of effective crosstalk reduction techniques

    State of the art 3D technologies and MVV end to end system design

    Get PDF
    L’oggetto del presente lavoro di tesi è costituito dall’analisi e dalla recensione di tutte le tecnologie 3D: esistenti e in via di sviluppo per ambienti domestici; tenendo come punto di riferimento le tecnologie multiview video (MVV). Tutte le sezioni della catena dalla fase di cattura a quella di riproduzione sono analizzate. Lo scopo è di progettare una possibile architettura satellitare per un futuro sistema MVV televisivo, nell’ambito di due possibili scenari, broadcast o interattivo. L’analisi coprirà considerazioni tecniche, ma anche limitazioni commerciali

    INTERMEDIATE VIEW RECONSTRUCTION FOR MULTISCOPIC 3D DISPLAY

    Get PDF
    This thesis focuses on Intermediate View Reconstruction (IVR) which generates additional images from the available stereo images. The main application of IVR is to generate the content of multiscopic 3D displays, and it can be applied to generate different viewpoints to Free-viewpoint TV (FTV). Although IVR is considered a good approach to generate additional images, there are some problems with the reconstruction process, such as detecting and handling the occlusion areas, preserving the discontinuity at edges, and reducing image artifices through formation of the texture of the intermediate image. The occlusion area is defined as the visibility of such an area in one image and its disappearance in the other one. Solving IVR problems is considered a significant challenge for researchers. In this thesis, several novel algorithms have been specifically designed to solve IVR challenges by employing them in a highly robust intermediate view reconstruction algorithm. Computer simulation and experimental results confirm the importance of occluded areas in IVR. Therefore, we propose a novel occlusion detection algorithm and another novel algorithm to Inpaint those areas. Then, these proposed algorithms are employed in a novel occlusion-aware intermediate view reconstruction that finds an intermediate image with a given disparity between two input images. This novelty is addressed by adding occlusion awareness to the reconstruction algorithm and proposing three quality improvement techniques to reduce image artifices: filling the re-sampling holes, removing ghost contours, and handling the disocclusion area. We compared the proposed algorithms to the previously well-known algorithms on each field qualitatively and quantitatively. The obtained results show that our algorithms are superior to the previous well-known algorithms. The performance of the proposed reconstruction algorithm is tested under 13 real images and 13 synthetic images. Moreover, analysis of a human-trial experiment conducted with 21 participants confirmed that the reconstructed images from our proposed algorithm have very high quality compared with the reconstructed images from the other existing algorithms

    Panoramic, large-screen, 3-D flight display system design

    Get PDF
    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified

    High definition systems in Japan

    Get PDF
    The successful implementation of a strategy to produce high-definition systems within the Japanese economy will favorably affect the fundamental competitiveness of Japan relative to the rest of the world. The development of an infrastructure necessary to support high-definition products and systems in that country involves major commitments of engineering resources, plants and equipment, educational programs and funding. The results of these efforts appear to affect virtually every aspect of the Japanese industrial complex. The results of assessments of the current progress of Japan toward the development of high-definition products and systems are presented. The assessments are based on the findings of a panel of U.S. experts made up of individuals from U.S. academia and industry, and derived from a study of the Japanese literature combined with visits to the primary relevant industrial laboratories and development agencies in Japan. Specific coverage includes an evaluation of progress in R&D for high-definition television (HDTV) displays that are evolving in Japan; high-definition standards and equipment development; Japanese intentions for the use of HDTV; economic evaluation of Japan's public policy initiatives in support of high-definition systems; management analysis of Japan's strategy of leverage with respect to high-definition products and systems

    Lightness, Brightness, and Transparency in Optical See-Through Augmented Reality

    Get PDF
    Augmented reality (AR), as a key component of the future metaverse, has leaped from the research labs to the consumer and enterprise markets. AR optical see-through (OST) devices utilize transparent optical combiners to provide visibility of the real environment as well as superimpose virtual content on top of it. OST displays distinct from existing media because of their optical additivity, meaning the light reaching the eyes is composed of both virtual content and real background. The composition results in the intended virtual colors being distorted and perceived transparent. When the luminance of the virtual content decreases, the perceived lightness and brightness decrease, and the perceived transparency increases. Lightness, brightness, and transparency are modulated by one physical dimension (luminance), and all interact with the background and each other. In this research, we aim to identify and quantify the three perceptual dimensions, as well as build mathematical models to predict them. In the first part of the study, we focused on the perceived brightness and lightness with two experiments: a brightness partition scaling experiment to build brightness scales, and a diffuse white adjustment experiment to determine the absolute luminance level required for diffuse white appearances on 2D and 3D AR stimuli. The second part of the research targeted at the perceived transparency in the AR environment with three experiments. The transparency was modulated by the background Michelson contrast reduction in either average luminance or peak-to-peak luminance difference to investigate, and later illustrated, the fundamental mechanism evoking transparency perception. The first experiment measured the transparency detection thresholds and confirmed that contrast sensitivity functions with contrast adaptation could model the thresholds. Subsequently, the transparency perception was investigated through direct anchored scaling experiment by building perceived transparency scales from the virtual content contrast ratio to the background. A contrast-ratio-based model was proposed predicting the perceived transparency scales. Finally, the transparency equivalency experiment between the two types of contrast modulation confirmed the mechanism difference and validated the proposed model

    Methods for Light Field Display Profiling and Scalable Super-Multiview Video Coding

    Get PDF
    Light field 3D displays reproduce the light field of real or synthetic scenes, as observed by multiple viewers, without the necessity of wearing 3D glasses. Reproducing light fields is a technically challenging task in terms of optical setup, content creation, distributed rendering, among others; however, the impressive visual quality of hologramlike scenes, in full color, with real-time frame rates, and over a very wide field of view justifies the complexity involved. Seeing objects popping far out from the screen plane without glasses impresses even those viewers who have experienced other 3D displays before.Content for these displays can either be synthetic or real. The creation of synthetic (rendered) content is relatively well understood and used in practice. Depending on the technique used, rendering has its own complexities, quite similar to the complexity of rendering techniques for 2D displays. While rendering can be used in many use-cases, the holy grail of all 3D display technologies is to become the future 3DTVs, ending up in each living room and showing realistic 3D content without glasses. Capturing, transmitting, and rendering live scenes as light fields is extremely challenging, and it is necessary if we are about to experience light field 3D television showing real people and natural scenes, or realistic 3D video conferencing with real eye-contact.In order to provide the required realism, light field displays aim to provide a wide field of view (up to 180°), while reproducing up to ~80 MPixels nowadays. Building gigapixel light field displays is realistic in the next few years. Likewise, capturing live light fields involves using many synchronized cameras that cover the same display wide field of view and provide the same high pixel count. Therefore, light field capture and content creation has to be well optimized with respect to the targeted display technologies. Two major challenges in this process are addressed in this dissertation.The first challenge is how to characterize the display in terms of its capabilities to create light fields, that is how to profile the display in question. In clearer terms this boils down to finding the equivalent spatial resolution, which is similar to the screen resolution of 2D displays, and angular resolution, which describes the smallest angle, the color of which the display can control individually. Light field is formalized as 4D approximation of the plenoptic function in terms of geometrical optics through spatiallylocalized and angularly-directed light rays in the so-called ray space. Plenoptic Sampling Theory provides the required conditions to sample and reconstruct light fields. Subsequently, light field displays can be characterized in the Fourier domain by the effective display bandwidth they support. In the thesis, a methodology for displayspecific light field analysis is proposed. It regards the display as a signal processing channel and analyses it as such in spectral domain. As a result, one is able to derive the display throughput (i.e. the display bandwidth) and, subsequently, the optimal camera configuration to efficiently capture and filter light fields before displaying them.While the geometrical topology of optical light sources in projection-based light field displays can be used to theoretically derive display bandwidth, and its spatial and angular resolution, in many cases this topology is not available to the user. Furthermore, there are many implementation details which cause the display to deviate from its theoretical model. In such cases, profiling light field displays in terms of spatial and angular resolution has to be done by measurements. Measurement methods that involve the display showing specific test patterns, which are then captured by a single static or moving camera, are proposed in the thesis. Determining the effective spatial and angular resolution of a light field display is then based on an automated analysis of the captured images, as they are reproduced by the display, in the frequency domain. The analysis reveals the empirical limits of the display in terms of pass-band both in the spatial and angular dimension. Furthermore, the spatial resolution measurements are validated by subjective tests confirming that the results are in line with the smallest features human observers can perceive on the same display. The resolution values obtained can be used to design the optimal capture setup for the display in question.The second challenge is related with the massive number of views and pixels captured that have to be transmitted to the display. It clearly requires effective and efficient compression techniques to fit in the bandwidth available, as an uncompressed representation of such a super-multiview video could easily consume ~20 gigabits per second with today’s displays. Due to the high number of light rays to be captured, transmitted and rendered, distributed systems are necessary for both capturing and rendering the light field. During the first attempts to implement real-time light field capturing, transmission and rendering using a brute force approach, limitations became apparent. Still, due to the best possible image quality achievable with dense multi-camera light field capturing and light ray interpolation, this approach was chosen as the basis of further work, despite the massive amount of bandwidth needed. Decompression of all camera images in all rendering nodes, however, is prohibitively time consuming and is not scalable. After analyzing the light field interpolation process and the data-access patterns typical in a distributed light field rendering system, an approach to reduce the amount of data required in the rendering nodes has been proposed. This approach, on the other hand, requires rectangular parts (typically vertical bars in case of a Horizontal Parallax Only light field display) of the captured images to be available in the rendering nodes, which might be exploited to reduce the time spent with decompression of video streams. However, partial decoding is not readily supported by common image / video codecs. In the thesis, approaches aimed at achieving partial decoding are proposed for H.264, HEVC, JPEG and JPEG2000 and the results are compared.The results of the thesis on display profiling facilitate the design of optimal camera setups for capturing scenes to be reproduced on 3D light field displays. The developed super-multiview content encoding also facilitates light field rendering in real-time. This makes live light field transmission and real-time teleconferencing possible in a scalable way, using any number of cameras, and at the spatial and angular resolution the display actually needs for achieving a compelling visual experience

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    The multifocal visual evoked cortical potential in visual field mapping: a methodological study.

    Get PDF
    The application of multifocal techniques to the visual evoked cortical potential permits objective electrophysiological mapping of the visual field. The multifocal visual evoked cortical potential (mfVECP) presents several technical challenges. Signals are small, are influenced by a number of sources of noise and waveforms vary both across the visual field and between subjects due to the complex geometry of the visual cortex. Together these factors hamper the ability to distinguish between a mfVECP response from the healthy visual pathway, and a response that is reduced or absent and is therefore representative of pathology. This thesis presents a series of methodological investigations with the aim of maximising the information available in the recorded electrophysiological response, thereby improving the performance of the mfVECP. A novel method of calculating the signal to noise ratio (SNR) of mfVECP waveform responses is introduced. A noise estimate unrelated to the response of the visual cortex to the visual stimulus is created. This is achieved by cross-correlating m-sequences which are created when the orthogonal set of m-sequences are created but are not used to control a stimulus region, with the physiological record. This metric is compared to the approach of defining noise within a delayed time window and shows good correlation. ROC analysis indicates a small improvement in the ability to distinguish between physiological waveform responses and noise. Defining the signal window as 45-250ms is recommended. Signal quality is improved by post-acquisition bandwidth filtering. A wide range of bandwidths are compared and the greatest gains are seen with a bandpass of 3 to 20Hz applied after cross-correlation. Responses evoked when stimulation is delivered using a cathode ray tube (CRT) and a liquid crystal display (LCD) projector system are compared. The mode of stimulus delivery affects the waveshape of responses. A significantly higher SNR is seen in waveforms is shown in waveforms evoked by an m=16 bit m-sequence delivered by a CRT monitor. Differences for shorter m-sequences were not statistically significant. The area of the visual field which can usefully be tested is investigated by increasing the field of view of stimulation from 20° to 40° of radius in 10° increments. A field of view of 30° of radius is shown to provide stimulation of as much of the visual field as possible without losing signal quality. Stimulation rates of 12.5 to 75Hz are compared. Slowing the stimulation rate produced increases waveform amplitudes, latencies and SNR values. The best performance was achieved with 25Hz stimulation. It is shown that a six-minute recording stimulated at 25Hz is superior to an eight-minute, 75Hz acquisition. An electrophysiology system capable of providing multifocal stimulation, synchronising with the acquisition of data from a large number of electrodes and performing cross-correlation has been created. This is a powerful system which permits the interrogation of the dipoles evoked within the complex geometry of the visual cortex from a very large number of orientations, which will improve detection ability. The system has been used to compare the performance of 16 monopolar recording channels in detecting responses to stimulation throughout the visual field. A selection of four electrodes which maximise the available information throughout the visual field has been made. It is shown that a several combinations of four electrodes provide good responses throughout the visual field, but that it is important to have them distributed on either hemisphere and above and below Oz. A series of investigations have indicated methods of maximising the available information in mfVECP recordings and progress the technique towards becoming a robust clinical tool. A powerful multichannel multifocal electrophysiology system has been created, with the ability to simultaneously acquire data from a very large number of bipolar recording channels and thereby detect many small dipole responses to stimulation of many small areas of the visual field. This will be an invaluable tool in future investigations. Performance has been shown to improve when the presence or absence of a waveform is determined by a novel SNR metric, when data is filtered post-acquisition through a 3-20Hz bandpass after cross-correlation and when a CRT is used to deliver the stimulus. The field of view of stimulation can usefully be extended to a radius of 30° when a 60-region dartboard pattern is employed. Performance can be enhanced at the same time as acquisition time is reduced by 25%, by the use of a 25Hz rate of stimulation instead of the frequently employed rate of 75Hz
    • …
    corecore