745 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    Power-Aware Logical Topology Design Heuristics in Wavelength-Routing Networks

    Get PDF
    Abstract—Wavelength-Routing (WR) networks are the most common solution for core networks. With the access segment moving from copper to Passive Optical Networks (PON), core networks will become one of the major culprits of Internet power consumption. However, WR networks offer some design flexibility which can be exploited to mitigate their energy requirements. One of the main steps which has to be faced in designing WR networks is the planning of the Logical Topology (LT) starting from the matrix of traffic requests. In this paper, we propose a Mixed Integer Linear Programming (MILP) formulation to find power-wise optimal LTs. In addition, due to the complexity of the MILP approach we propose a greedy heuristic and a genetic algorithm (GA) ensuring performance close to the one achieved by the MILP formulation. I

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    A Novel Solution to the Dynamic Routing and Wavelength Assignment Problem in Transparent Optical Networks

    Full text link
    We present an evolutionary programming algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in optical wavelength-division multiplexing (WDM) networks under wavelength continuity constraint. We assume an ideal physical channel and therefore neglect the blocking of connection requests due to the physical impairments. The problem formulation includes suitable constraints that enable the algorithm to balance the load among the individuals and thus results in a lower blocking probability and lower mean execution time than the existing bio-inspired algorithms available in the literature for the DRWA problems. Three types of wavelength assignment techniques, such as First fit, Random, and Round Robin wavelength assignment techniques have been investigated here. The ability to guarantee both low blocking probability without any wavelength converters and small delay makes the improved algorithm very attractive for current optical switching networks.Comment: 12 Pages, IJCNC Journal 201
    corecore