22 research outputs found

    Enhanced image encryption scheme with new mapreduce approach for big size images

    Get PDF
    Achieving a secured image encryption (IES) scheme for sensitive and confidential data communications, especially in a Hadoop environment is challenging. An accurate and secure cryptosystem for colour images requires the generation of intricate secret keys that protect the images from diverse attacks. To attain such a goal, this work proposed an improved shuffled confusion-diffusion based colour IES using a hyper-chaotic plain image. First, five different sequences of random numbers were generated. Then, two of the sequences were used to shuffle the image pixels and bits, while the remaining three were used to XOR the values of the image pixels. Performance of the developed IES was evaluated in terms of various measures such as key space size, correlation coefficient, entropy, mean squared error (MSE), peak signal to noise ratio (PSNR) and differential analysis. Values of correlation coefficient (0.000732), entropy (7.9997), PSNR (7.61), and MSE (11258) were determined to be better (against various attacks) compared to current existing techniques. The IES developed in this study was found to have outperformed other comparable cryptosystems. It is thus asserted that the developed IES can be advantageous for encrypting big data sets on parallel machines. Additionally, the developed IES was also implemented on a Hadoop environment using MapReduce to evaluate its performance against known attacks. In this process, the given image was first divided and characterized in a key-value format. Next, the Map function was invoked for every key-value pair by implementing a mapper. The Map function was used to process data splits, represented in the form of key-value pairs in parallel modes without any communication between other map processes. The Map function processed a series of key/value pairs and subsequently generated zero or more key/value pairs. Furthermore, the Map function also divided the input image into partitions before generating the secret key and XOR matrix. The secret key and XOR matrix were exploited to encrypt the image. The Reduce function merged the resultant images from the Map tasks in producing the final image. Furthermore, the value of PSNR did not exceed 7.61 when the developed IES was evaluated against known attacks for both the standard dataset and big data size images. As can be seen, the correlation coefficient value of the developed IES did not exceed 0.000732. As the handling of big data size images is different from that of standard data size images, findings of this study suggest that the developed IES could be most beneficial for big data and big size images

    A review of compressive sensing in information security field

    Full text link
    The applications of compressive sensing (CS) in the fi eld of information security have captured a great deal of researchers\u27 attention in the past decade. To supply guidance for researchers from a comprehensive perspective, this paper, for the fi rst time, reviews CS in information security field from two aspects: theoretical security and application security. Moreover, the CS applied in image cipher is one of the most widespread applications, as its characteristics of dimensional reduction and random projection can be utilized and integrated into image cryptosystems, which can achieve simultaneous compression and encryption of an image or multiple images. With respect to this application, the basic framework designs and the corresponding analyses are investigated. Speci fically, the investigation proceeds from three aspects, namely, image ciphers based on chaos and CS, image ciphers based on optics and CS, and image ciphers based on chaos, optics, and CS. A total of six frameworks are put forward. Meanwhile, their analyses in terms of security, advantages, disadvantages, and so on are presented. At last, we attempt to indicate some other possible application research topics in future

    Bl-IEA: a Bit-Level Image Encryption Algorithm for cognitive services in Intelligent Transportation Systems

    Get PDF
    In Intelligent Transportation Systems, images are the main data sources to be analyzed for providing intelligent and precision cognitive services. Therefore, how to protect the privacy of sensitive images in the process of information transmission has become an important research issue, especially in future no non-private data era. In this article, we design the Rearrangement-Arnold Cat Map (R-ACM) to disturb the relationship between adjacent pixels and further propose an efficient Bit-level Image Encryption Algorithm(Bl-IEA) based on R-ACM. Experiments show that the correlation coefficients of two adjacent pixels are 0.0022 in the horizontal direction, -0.0105 in the vertical direction, and -0.0035 in the diagonal direction respectively, which are obviously weaker than that of the original image with high correlations of adjacent pixels. What's more, the NPCR is 0.996120172, and the UACI is 0.334613406, which indicate that Bl-IEA has stronger ability to resist different attacks compared with other solutions. Especially, the lower time complexity and only one round permutation make it particularly suitable to be used in the time-limited intelligent transportation field

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Magic cube puzzle approach for image encryption

    Get PDF
    In principle, the image encryption algorithm produces an encrypted image. The encrypted image is composed of arbitrary patterns that do not provide any clues about the plain image and its cipher key. Ideally, the encrypted image is entirely independent of its plain image. Many functions can be used to achieve this goal. Based on the functions used, image encryption techniques are categorized into: (1) Block-based; (2) Chaotic-based; (3) Transformation-based; (4) Conventional-based; and (5) Miscellaneous based. This study proposes a magic cube puzzle approach to encrypt an 8-bit grayscale image. This approach transforms a plain image into a particular size magic cube puzzle, which is consists of a set of blocks. The magic cube puzzle algorithm will diffuse the pixels of the plain image as in a Rubik’s Cube game, by rotating each block in a particular direction called the transposition orientation. The block’s transposition orientation is used as the key seed, while the generation of the cipher key uses a random permutation of the key seed with a certain key length. Several performance metrics have been used to assess the goals, and the results have been compared to several standard encryption methods. This study showed that the proposed method was better than the other methods, except for entropy metrics. For further studies, modification of the method will be carried out in such a way as to be able to increase its entropy value to very close to 8 and its application to true color images. In essence, the magic cube puzzle approach has a large space for pixel diffusion that is possibly supposed to get bigger as a series of data has transformed into several magic cubes. Then, each magic cube has transposed with a different technique. This proposed approach is expected to add to a wealth of knowledge in the field of data encryption

    Efficient architectures of heterogeneous fpga-gpu for 3-d medical image compression

    Get PDF
    The advent of development in three-dimensional (3-D) imaging modalities have generated a massive amount of volumetric data in 3-D images such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US). Existing survey reveals the presence of a huge gap for further research in exploiting reconfigurable computing for 3-D medical image compression. This research proposes an FPGA based co-processing solution to accelerate the mentioned medical imaging system. The HWT block implemented on the sbRIO-9632 FPGA board is Spartan 3 (XC3S2000) chip prototyping board. Analysis and performance evaluation of the 3-D images were been conducted. Furthermore, a novel architecture of context-based adaptive binary arithmetic coder (CABAC) is the advanced entropy coding tool employed by main and higher profiles of H.264/AVC. This research focuses on GPU implementation of CABAC and comparative study of discrete wavelet transform (DWT) and without DWT for 3-D medical image compression systems. Implementation results on MRI and CT images, showing GPU significantly outperforming single-threaded CPU implementation. Overall, CT and MRI modalities with DWT outperform in term of compression ratio, peak signal to noise ratio (PSNR) and latency compared with images without DWT process. For heterogeneous computing, MRI images with various sizes and format, such as JPEG and DICOM was implemented. Evaluation results are shown for each memory iteration, transfer sizes from GPU to CPU consuming more bandwidth or throughput. For size 786, 486 bytes JPEG format, both directions consumed bandwidth tend to balance. Bandwidth is relative to the transfer size, the larger sizing will take more latency and throughput. Next, OpenCL implementation for concurrent task via dedicated FPGA. Finding from implementation reveals, OpenCL on batch procession mode with AOC techniques offers substantial results where the amount of logic, area, register and memory increased proportionally to the number of batch. It is because of the kernel will copy the kernel block refer to batch number. Therefore memory bank increased periodically related to kernel block. It was found through comparative study that the tree balance and unroll loop architecture provides better achievement, in term of local memory, latency and throughput

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore