220 research outputs found

    All optical systems for terabit network era

    Get PDF
    The continuous growth of the network capacity demand drives the development of the optical fiber networks. Since optical super-channels carrying multi- Terabit/s transmissions are the next evolution of the optical links, future transmitters and receivers systems will be required to handle vast volume of information while maintaining reasonable power consumption and cost. In addition, when point-to-point links are approaching the fundamental limit of standard fiber, the efficient use of the entire transmission window for optical networks will only be achieved through flexible superchannels compatible with flexible optical nodes. This thesis describes the research work carried out to investigate the future optical systems that will support the Terabit era networks. All-optical systems are presented, allowing for high spectral efficiency in future networks, from the comb sources to the optical nodes. The following manuscript firstly reports on the development of optical combs based on external modulators to provide transmitters with a large number of optical carriers. Then, the implementation of an experimental all-optical super-channel through the use of optical signals and wavelength manipulations is described. Finally, a novel all-optical node called Terabit Interferometric add, Drop, and Extract (TIDE) is presented. With a management of the super-channel components in the optical domain, the optical node offers transparency and flexibility while maintaining the high spectral efficiency of the super-channel carrying links. An optical frequency comb source was developed, generating a high quality 9-line comb with a spectral flatness 20 dB. A single Mach-Zehnder modulator was driven with a low power multi- harmonic electrical signal. Furthermore, a large 36 line comb was obtained by the addition of a two cascaded modulators comb source driven with a 90 GHz signal The implementation of an alloptical Orthogonal Frequency Division Multiplexing (OFDM) super-channel, using a high quality single sideband modulation scheme based on a dual-parallel Mach-Zehnder modulator, allowed for the development and test of the all-optical TIDE node. The interferometer-based structure was capable of managing (add, drop, and extract) channel from a super-channel strictly in the optical domain. In this manuscript, we prove that it is possible to extract channels even with overlapping spectrum super-channel aggregation for both single and dual quadrature modulation formats

    Microwave Photonic Applications - From Chip Level to System Level

    Get PDF
    Die Vermischung von Mikrowellen- und optischen Technologien – Mikrowellenphotonik – ist ein neu aufkommendes Feld mit hohem Potential. Durch die Nutzung der Vorzüge beider Welten hat die Mikrowellenphotonik viele Anwendungsfälle und ist gerade erst am Beginn ihrer Erfolgsgeschichte. Der Weg für neue Konzepte, neue Komponenten und neue Anwendungen wird dadurch geebnet, dass ein höherer Grad an Integration sowie neue Technologien wie Silicon Photonics verfügbar sind. In diesem Werk werden zuerst die notwendigen grundlegenden Basiskomponenten – optische Quelle, elektro-optische Wandlung, Übertragungsmedium und opto-elektrische Wandlung – eingeführt. Mithilfe spezifischer Anwendungsbeispiele, die von Chipebene bis hin zur Systemebene reichen, wird der elektrooptische Codesign-Prozess veranschaulicht. Schließlich werden zukünftige Ausrichtungen wie die Unterstützung von elektrischen Trägern im Millimeterwellen- und THz-Bereich sowie Realisierungsoptionen in integrierter Optik und Nanophotonik diskutiert.The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Multiheterodyne tunable sources for the interrogation of fiber optic sensors applied to acoustic emissions and ultrasound

    Get PDF
    Mención Internacional en el título de doctorLight is a very useful tool for measuring high frequency and low amplitude mechanical vibrations. Thanks to the interference process and under certain circumstances we can obtain a specific sort of optical sources called multimode multiheterodyne sources, that are very useful to read several optical wavelengths at the same time on a single photodetector and distinguishing them from each other. This characteristic makes them suitable for interrogating fiber optic sensors. In this thesis, I analyze several fiber optic sensor readout methods that mix multiheterodyne techniques, multimode techniques, and interferometry techniques to measure ultrasound and acoustic mechanical waves. These mechanical waves occur when periodic forces are applied to mechanical structures. This disturbs the layout of atoms and may lead to cracks or the complete collapse of the structure. Therefore, the characterization and measurement of such vibrations are of great importance when performing structure health monitoring (SHM) and non-destructive evaluation (NDE). This thesis aims to solve this problem by implementing several systems that employ light-based technology to measure and characterize mechanical vibrations up to 1 MHz of frequency and sub-nano-strain (lower than 10-3 ppm) level of resolution. The proposed systems involve new features and parameters more settable compared to more conventional approaches of optical sensor reading processes and therefore they offer wider possibilities. A total of three systems have been implemented and tested: First, an electro-optic dual optical frequency comb source to read fiber Bragg gratings for dynamic measurements. This set up reaches 120 kHz of mechanical frequency detection. The second system is based on a self-heterodyne acousto-optic comb that reads a random fiber grating sensor. In this case, the system can detect up to 1 MHz of mechanical vibrations. Finally, the third is based on a compact electro-optic dual optical frequency comb that is used to read low reflectivity fiber Bragg gratings with a dispersion interferometer. This system can detect a maximum of 135 kHz of mechanical frequencies. The results of this thesis improve previous systems achievements to satisfy the specifications required to date in this application, both in mechanical bandwidth and in strain amplitude. They also show the potential of these multimode sources for high-precision optical sensing.La luz es una herramienta muy útil para medir vibraciones mecánicas de alta frecuencia y baja amplitud. Gracias al proceso de interferencia y bajo determinadas circunstancias podemos obtener un tipo específico de fuentes ópticas, denominadas fuentes multimodo multiheterodinas, que son muy útiles para leer varias longitudes de onda ópticas al mismo tiempo en un solo fotodetector y distinguirlas entre sí. Esta característica hace que estas fuentes ópticas sean adecuadas para la lectura de sensores de fibra óptica. En esta tesis, analizo varios métodos de lectura de sensores de fibra óptica que mezclan técnicas multiheterodinas, técnicas multimodo y técnicas de interferometría para medir ultrasonidos y ondas mecánicas acústicas. Estas ondas mecánicas se producen cuando se aplican fuerzas periódicas a las estructuras mecánicas. Esto perturba la disposición de los átomos y puede provocar grietas o el colapso completo de la estructura. Por lo tanto, la caracterización y medida de dichas vibraciones son de gran importancia a la hora de monitorizar el estado de las estructuras y de realizar una evaluación no destructiva. Esta tesis tiene como objetivo resolver este problema mediante la implementación de varios sistemas que emplean tecnología basada en la luz para medir y caracterizar vibraciones mecánicas hasta frecuencias de 1 MHz y nivel de resolución sub-nano-deformación (menor que 10-3 ppm). Los sistemas propuestos implican nuevas características y parámetros más configurables en comparación con los enfoques más convencionales de procesos de lectura de sensores ópticos y, por lo tanto, ofrecen posibilidades más amplias. A lo largo de la tesis se presentan tres sistemas de medida: El primero está basado en un doble peine de frecuencias ópticas (dual comb) electroóptico que es capaz de leer sensores de fibra óptica basados en redes de Bragg (FBG) en régimen dinámico. Este sistema ha sido probado con una frecuencia máxima de detección de 120 kHz. En segundo lugar, se presenta un sistema basado en un selfheterodyne comb acustoóptico para leer sensores de fibra con distribución aleatoria de la rejilla en el núcleo (random grating). Este sistema es capaz de detectar señales de vibración de hasta 1 MHz. El tercer sistema presentado se basa en un doble peine de frecuencias ópticas (dual comb) electroóptico compacto que se utiliza para leer sensores FBG de baja reflectividad con un interferómetro de dispersión. Este sistema puede detectar hasta 135 kHz de vibraciones mecánicas. Los resultados de esta tesis mejoran los obtenidos en sistemas anteriores a fin de satisfacer las especificaciones requeridas hasta la fecha en esta aplicación, tanto en el ancho de banda mecánico como en la amplitud de la deformación. También muestran el potencial de estas fuentes multimodo para la detección óptica de alta precisión.Quiero agradecer la financiación de este trabajo dada por el Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario FPU2016 (Beca FPU16/03695) y a través del proyecto PARAQUA (TEC2017-86271-R), así como por el Ministerio de Ciencia, Innovación y Universidades a través de las ayudas de movilidad EST18/00617.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Óscar Esteban Martínez.- Secretario: Marta Ruiz Llata.- Vocal: Pedro Alberto da Silva Jorg

    Optical Microwave Signal Generation for Data Transmission in Optical Networks

    Get PDF
    The massive growth of telecommunication services and the increasing global data traffic boost the development, implementation, and integration of different networks for data transmission. An example of this development is the optical fiber networks, responsible today for the inter-continental connection through long-distance links and high transfer rates. The optical networks, as well as the networks supported by other transmission media, use electrical signals at specific frequencies for the synchronization of the network elements. The quality of these signals is usually determined in terms of phase noise. Due to the major impact of the phase noise over the system performance, its value should be minimized. The research work presented in this document describes the design and implementation of an optoelectronic system for the microwave signal generation using a vertical-cavity surface-emitting laser (VCSEL) and its integration into an optical data transmission system. Considering that the proposed system incorporates a directly modulated VCSEL, a theoretical and experimental characterization was developed based on the laser rate equations, dynamic and static measurements, and an equivalent electrical model of the active region. This procedure made possible the extraction of some VCSEL intrinsic parameters, as well as the validation and simulation of the VCSEL performance under specific modulation conditions. The VCSEL emits in C-band, this wavelength was selected because it is used in long-haul links. The proposed system is a self-initiated oscillation system caused by internal noise sources, which includes a VCSEL modulated in large signal to generate optical pulses (gain switching). The optical pulses, and the optical frequency comb associated, generate in electrical domain simultaneously a fundamental frequency (determined by a band-pass filter) and several harmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8 dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture. Both the jitter and optical pulse width were determined when different resonant cavities and polarization currents were employed. The lowest pulse duration was 85 ps and was achieved when the fundamental frequency was 2.5 GHz. As for the optical frequency comb, it was demonstrated that its flatness depends on the electrical modulation conditions. The flattest profiles are obtained when the fundamental frequency is higher than the VCSEL relaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter. The electrical signal provides the synchronization of the data generating equipment, whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52 Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated that the fundamental frequency and harmonics could be extracted from the optical data signal transmitted by a band-pass filter. It was also experimentally proved that the pulsed return-to-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−910^{-9} when the optical power at the receiver is higher than -33 dBm.La masificación de los servicios de telecomunicaciones y el creciente tráfico global de datos han impulsado el desarrollo, despliegue e integración de diferentes redes para la transmisión de datos. Un ejemplo de este despliegue son las redes de fibra óptica, responsables en la actualidad de la interconexión de los continentes a través de enlaces de grandes longitudes y altas tasas de transferencia. Las redes ópticas, al igual que las redes soportadas por otros medios de transmisión, utilizan señales eléctricas a frecuencias específicas para la sincronización de los elementos de red. La calidad de estas señales es determinante en el desempeño general del sistema, razón por la que su ruido de fase debe ser lo más pequeño posible. El trabajo de investigación presentado en este documento describe el diseño e implementación de un sistema optoelectrónico para la generación de señales microondas utilizando diodos láser de cavidad vertical (VCSEL) y su integración en un sistema de transmisión de datos óptico. Teniendo en cuenta que el sistema propuesto incorpora un láser VCSEL modulado directamente, se desarrolló una caracterización teórico-experimental basada en las ecuaciones de evolución del láser, mediciones dinámicas y estáticas, y un modelo eléctrico equivalente de la región activa. Este procedimiento posibilitó la extracción de algunos parámetros intrínsecos del VCSEL, al igual que la validación y simulación de su desempeño bajo diferentes condiciones de modulación. El VCSEL utilizado emite en banda C y fue seleccionado considerando que esta banda es comúnmente utilizada en enlaces de largo alcance. El sistema propuesto consiste en un lazo cerrado que inicia la oscilación gracias a las fuentes de ruido de los componentes y modula el VCSEL en gran señal para generar pulsos ópticos (conmutación de ganancia). Estos pulsos ópticos, que en el dominio de la frecuencia corresponden a un peine de frecuencia óptico, son detectados para generar simultáneamente una frecuencia fundamental (determinada por un filtro pasa banda) y varios armónicos. El ruido de fase medido a 10 kHz de la portadora a 1.25 GHz fue -127.8 dBc/Hz, y es el valor más bajo reportado en la literatura para esta frecuencia y arquitectura. Tanto la fluctuación de fase (jitter) y el ancho de los pulsos ópticos fueron determinados cuando diferentes cavidades resonantes y corrientes de polarización fueron empleadas. La duración de pulso más baja fue 85 ps y se obtuvo cuando la frecuencia fundamental del sistema era 2.5 GHz. En cuanto al peine de frecuencia óptico, se demostró que su planitud (flatness) depende de las condiciones eléctricas de modulación y que los perfiles más planos se obtienen cuando la frecuencia fundamental es superior a la frecuencia de relajación del VCSEL. Tanto la salida eléctrica como la salida óptica del sistema fueron integradas en un transmisor óptico. La señal eléctrica permite la sincronización de los equipos encargados de generar los datos, mientras que los pulsos ópticos son utilizados como portadora óptica. La transmisión de datos a 155.52 Mb/s, 622.08 Mb/s y 1.25 Gb/s fue validada experimentalmente. Se demostró que la frecuencia fundamental y los armónicos pueden ser extraídos de la señal óptica de datos transmitida mediante un filtro pasa banda. También se comprobó experimentalmente que el transmisor de datos pulsados con retorno a cero (RZ) a 1.25 Gb/s, logra tasas de error de bit (BER) menores a 10-9 cuando la potencia óptica en el receptor es mayor a -33 dBm.Gobernación de NariñoBPIN 2013000100092Doctorad

    InP integrated optical frequency comb generator using an amplified recirculating loop

    Get PDF
    A novel realisation of photonically integrated optical frequency comb generation is demonstrated on indium phosphide (InP) using a generic foundry platform. The architecture, based on the amplified recirculating loop technique, consists of cascaded electro-optic phase modulators embedded within a short waveguide loop. While an injected continuous wave laser signal is recirculated by the loop, the modulators are driven with a modulation frequency corresponding to the round-trip loop length frequency. This results in many phase coherent, evenly spaced optical comb lines being generated. The choice of InP as an integration platform allows immediate optical amplification of the modulated signal by embedded semiconductor optical amplifiers, enabling loop losses to be compensated and expanding the comb across broad optical bandwidths. This approach reduces the requirement for external, high-power optical amplifiers, improving the compactness and power efficiency of the full system. The system was modelled to identify off-resonance behaviour, outlining limits in matching both the modulation frequency and seed laser frequency to the round-trip loop frequency for optimal comb line generation to be achieved. The experimental device occupied a fraction of the 6 x 2 mm2 InP chip and operated at round-trip loop frequencies of 6.71 GHz to produce 59 comb lines within a 20 dB power envelope. All comb lines exhibited strong phase coherence as characterised by low composite phase noise measurements of -105 dBc/Hz at 100 kHz. A second device is also presented with a shorter loop length operating at ~10 GHz which generated 57 comb lines. Both loop configurations included short waveguide phase shifters providing a degree of tunability of the free spectral range with a tuning range of 150 MHz for small injection currents of less than 2.5 mA.This research work has been supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through the Integrated Photonics and Electronic Systems (IPES) Centre of Doctoral Training and PICSat project (EPSRC Reference: EP/S000976/1)

    Generation of Frequency Tunable and Low Phase Noise Micro- and Millimeter-Wave Signals using Photonic Technologies

    Get PDF
    The concept of generating micro- and millimeter-wave signals by optical means offers a variety of unique features compared to purely electronics such as high frequency tunability, ultra-wideband operation and the possibility to distribute micro- and millimeter-wave signals over kilometers of optical fiber to a remote site. These features make the photonic synthesizer concept a very interesting alternative for several applications in the micro- and millimeter-wave regime. This thesis focuses on the realization and characterization of different photonic synthesizer concepts for the optical generation of frequency tunable and low phase noise micro- and millimeter-wave signals. Advanced microwave photonic approaches utilizing external optical modulation and optical multiplication will be presented, offering high frequency optical millimeter-wave generation up to 110 GHz with superior performances in terms of maximum frequency tuning ranges and phase noise characteristics. In addition, the concept of a novel dual-loop optoelectronic oscillator will be presented that enables optical millimeter-wave signal generation without the need of any electronic reference oscillator. By using the developed dual-loop optoelectronic oscillator, microwave signal generation with tuning ranges in the gigahertz regime has been experimentally demonstrated for the first time.Das Konzept der optischen Mikro- und Millimeterwellen-Generation bietet gegenüber rein elektronischen Konzepten eine Vielzahl einzigartiger Möglichkeiten, bedingt durch die hohe Frequenzabstimmbarkeit, die extrem hohe Bandbreite sowie die Möglichkeit, Mikro- und Millimeterwellen-Signale über optische Fasern kilometerweit zu einer entfernten Station zu übertragen. Diese Eigenschaften machen das Konzept des photonischen Synthesizers zu einer sehr interessanten Alternative für viele Applikationen im Mikro- und Millimeterwellen-Bereich. Diese Arbeit beschäftigt sich mit der Realisierung und Charakterisierung verschiedener photonischer Synthesizer-Konzepte zur optischen Generation von frequenzabstimmbaren Mikro- und Millimeterwellen-Signalen mit geringem Phasenrauschen. Fortschrittliche photonische Konzepte unter Ausnutzung externer optischer Modulation sowie optischer Multiplikation werden vorgestellt. Diese Konzepte ermöglichen die optische Generierung hochfrequenter Millimeterwellen bis zu 110 GHz mit ausgezeichneter Performance in Bezug auf maximale Frequenzabstimmbarkeit sowie Phasenrauschen. Des Weiteren wurde ein neuartiges Konzept des optoelektronischen Oszillators, bestehend aus zwei Faserringen, vorgestellt, welches die Generierung von Millimeterwellen-Signalen ohne die Notwendigkeit eines elektronischen Referenzoszillators ermöglicht. Mit Hilfe des entwickelten optoelektronischen Oszillators wurde erstmals ein Mikrowellen-Signal mit einer Frequenzabstimmbarkeit im Gigahertz-Bereich experimentell erreicht

    Microwave Photonic Signal Processing Using On-Chip Nonlinear Optics

    Get PDF
    The field of microwave photonics (MWP) emerged as a solution to the challenges faced by electronic systems when dealing with high-bandwidth RF and microwave signals. Photonic devices are capable of handling immense bandwidths thanks to the properties of light. MWP therefore employs such devices to process and distribute the information carried by RF and microwave signals, enabling significantly higher capacity compared to conventional electronics. The photonic devices traditionally used in MWP circuits have mainly comprised bulky components, such as spools of fibre and benchtop optical amplifiers. While achieving impressive performance, these systems were not capable of competing with electronics in terms of size and portability. More recently, research has focused on the application of photonic chip technology to the field of MWP in order to reap the benefits of integration, such as reductions in size, weight, cost, and power consumption. Integrated MWP however is still in its infancy, and ongoing research efforts are exploring new ways to match integrated photonic devices to the unique requirements of MWP circuits. This work investigates the application of on-chip nonlinear optical interactions to MWP. Nonlinear optics enables light-on-light interactions (not normally possible in a linear regime) which open a vast array of powerful functionalities. In particular, this thesis focuses on stimulated Brillouin scattering, resulting from the interaction of light with hypersonic sound waves, and four-wave mixing, where photons exchange energies. These two nonlinear effects are applied to implement MWP ultra-high suppression notch filters, wideband phase shifters, and ultra-fast instantaneous frequency measurement systems. Experimental demonstrations using integrated optical waveguides confirm record results

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder
    • …
    corecore