3,315 research outputs found

    Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects

    Get PDF
    Development of an efficient and densely integrated optical coupling interface for silicon photonics based board-level optical interconnects is one of the key challenges in the domain of 2.5D/3D electro-optic integration. Enabling high-speed on-chip electro-optic conversion and efficient optical transmission across package/board-level short-reach interconnections can help overcome the limitations of a conventional electrical I/O in terms of bandwidth density and power consumption in a high-performance computing environment. In this context, we have demonstrated a novel optical coupling interface to integrate silicon photonics with board-level optical interconnects. We show that by integrating a ball lens in a via drilled in an organic package substrate, the optical beam diffracted from a downward directionality grating on a photonics chip can be coupled to a board-level polymer multimode waveguide with a good alignment tolerance. A key result from the experiment was a 14 chip-to-package 1-dB lateral alignment tolerance for coupling into a polymer waveguide with a cross-section of 20 x 25. An in-depth analysis of loss distribution across several interfaces was done and a -3.4 dB coupling efficiency was measured between the optical interface comprising of output grating, ball lens and polymer waveguide. Furthermore, it is shown that an efficiency better than -2 dB can be achieved by tweaking few parameters in the coupling interface. The fabrication of the optical interfaces and related measurements are reported and verified with simulation results

    Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Full text link
    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz^-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the photonic detection of electromagnetic waves. Finally, we propose some future work, including a Teraherz wave sensor based on antenna-coupled electro-optic polymer filled plasmonic slot waveguide, as well as a fully packaged and tailgated device.Comment: 20 pages, 16 figure

    Expanded-beam backside coupling interface for alignment-tolerant packaging of silicon photonics

    Get PDF
    We demonstrate an alignment-tolerant backside coupling interface in the O-band for silicon photonics by generating an optimized through-substrate (downward) directionality beam from a TE-mode grating coupler and hybrid integrating the chip with backside silicon microlenses to achieve expanded beam collimation. The key advantage of using such an expanded beam interface is an increased coupling tolerance to lateral and longitudinal misalignment. A 34 mu m beam diameter was achieved over a combined substrate thickness of 630 mu m which was then coupled to a thermally expanded core single-mode fiber to investigate the tolerances. A 1-dB fiber-to-microlens lateral alignment tolerance of 14 mu m and an angular alignment tolerance of 1 degrees was measured at a wavelength of 1310 nm. In addition, a large +/- 2.5 mu m 1-dB backside alignment accuracy was measured for the placement of microlens with respect to the grating. The radius of curvature of Si microlens to achieve a collimated beam was 480 mu m, and a 1-dB longitudinal alignment tolerance of 700 mu m was measured for coupling to a single-mode expanded core fiber. The relaxation in alignment tolerances make the demonstrated coupling interface suitable for chip-to-package or chip-to-board couplin

    Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer

    Full text link
    Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of V{\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators based on non-band-engineered PCWs and ring-resonators.Comment: 12 pages, 4 figures, SPIE Photonics West Conference 201

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics

    Get PDF
    Integrated photoniccircuits, increasingly based on silicon (-nitride), are at the core of the next generation of low-cost, energy efficient optical devices ranging from on-chip interconnects to biosensors. One of the main bottlenecks in developing such components is that of implementing sufficient functionalities on the often passive backbone, such as light emission and amplification. A possible route is that of hybridization where a new material is combined with the existing framework to provide a desired functionality. Here, we present a detailed design flow for the hybridization of silicon nitride-based integrated photonic circuits with so-called colloidal quantum dots (QDs). QDs are nanometer sized pieces of semiconductor crystals obtained in a colloidal dispersion which are able to absorb, emit, and amplify light in a wide spectral region. Moreover, theycombine cost-effective solution based deposition methods, ambient stability, and low fabrication cost. Starting from the linear and nonlinear material properties obtained on the starting colloidal dispersions, we can predict and evaluate thin film and device performance, which we demonstrate through characterization of the first on-chip QD-based laser

    Ultra-compact optical auto-correlator based on slow-light enhanced third harmonic generation in a silicon photonic crystal waveguide

    Get PDF
    The ability to use coherent light for material science and applications is directly linked to our ability to measure short optical pulses. While free-space optical methods are well-established, achieving this on a chip would offer the greatest benefit in footprint, performance, flexibility and cost, and allow the integration with complementary signal processing devices. A key goal is to achieve operation at sub-Watt peak power levels and on sub-picosecond timescales. Previous integrated demonstrations require either a temporally synchronized reference pulse, an off-chip spectrometer, or long tunable delay lines. We report the first device capable of achieving single-shot time-domain measurements of near-infrared picosecond pulses based on an ultra-compact integrated CMOS compatible device, with the potential to be fully integrated without any external instrumentation. It relies on optical third-harmonic generation in a slow-light silicon waveguide. Our method can also serve as a powerful in-situ diagnostic tool to directly map, at visible wavelengths, the propagation dynamics of near-infrared pulses in photonic crystals.Comment: 20 pages, 6 figures, 38 reference

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies
    • …
    corecore