6,572 research outputs found

    Optical versus video see-through mead-mounted displays in medical visualization

    Get PDF
    We compare two technological approaches to augmented reality for 3-D medical visualization: optical and video see-through devices. We provide a context to discuss the technology by reviewing several medical applications of augmented-reality research efforts driven by real needs in the medical field, both in the United States and in Europe. We then discuss the issues for each approach, optical versus video, from both a technology and human-factor point of view. Finally, we point to potentially promising future developments of such devices including eye tracking and multifocus planes capabilities, as well as hybrid optical/video technology

    Software Framework for Customized Augmented Reality Headsets in Medicine

    Get PDF
    The growing availability of self-contained and affordable augmented reality headsets such as the Microsoft HoloLens is encouraging the adoption of these devices also in the healthcare sector. However, technological and human-factor limitations still hinder their routine use in clinical practice. Among them, the major drawbacks are due to their general-purpose nature and to the lack of a standardized framework suited for medical applications and devoid of platform-dependent tracking techniques and/or complex calibration procedures. To overcome such limitations, in this paper we present a software framework that is designed to support the development of augmented reality applications for custom-made head-mounted displays designed to aid high-precision manual tasks. The software platform is highly configurable, computationally efficient, and it allows the deployment of augmented reality applications capable to support in situ visualization of medical imaging data. The framework can provide both optical and video see-through-based augmentations and it features a robust optical tracking algorithm. An experimental study was designed to assess the efficacy of the platform in guiding a simulated task of surgical incision. In the experiments, the user was asked to perform a digital incision task, with and without the aid of the augmented reality headset. The task accuracy was evaluated by measuring the similarity between the traced curve and the planned one. The average error in the augmented reality tests was < 1 mm. The results confirm that the proposed framework coupled with the new-concept headset may boost the integration of augmented reality headsets into routine clinical practice

    Perspective Preserving Solution for Quasi-Orthoscopic Video See-Through HMDs

    Get PDF
    In non-orthoscopic video see-through (VST) head-mounted displays (HMDs), depth perception through stereopsis is adversely affected by sources of spatial perception errors. Solutions for parallax-free and orthoscopic VST HMDs were considered to ensure proper space perception but at expenses of an increased bulkiness and weight. In this work, we present a hybrid video-optical see-through HMD the geometry of which explicitly violates the rigorous conditions of orthostereoscopy. For properly recovering natural stereo fusion of the scene within the personal space in a region around a predefined distance from the observer, we partially resolve the eye-camera parallax by warping the camera images through a perspective preserving homography that accounts for the geometry of the VST HMD and refers to such distance. For validating our solution; we conducted objective and subjective tests. The goal of the tests was to assess the efficacy of our solution in recovering natural depth perception in the space around said reference distance. The results obtained showed that the quasi-orthoscopic setting of the HMD; together with the perspective preserving image warping; allow the recovering of a correct perception of the relative depths. The perceived distortion of space around the reference plane proved to be not as severe as predicted by the mathematical models

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Hybrid Video/Optical See-Through HMD

    Get PDF
    An old but still ongoing subject of debate among augmented reality (AR) experts is about which see-through paradigm is best in wearable AR displays. Video see-through (VST) and optical see-through (OST) paradigms have both their own strengths and shortcomings with respect to technological and human-factor aspects. The major difference between these see-through paradigms is in providing an aided (VST) or unaided (OST) view of the real world. In this work, we present a novel approach for the development of AR stereoscopic head-mounted displays (HMDs) that can provide both the see-through mechanisms. Our idea is to dynamically modify the transparency of the display through a liquid crystal (LC)-based electro-optical shutter applied on the top of a standard OST device opportunely modified for housing a pair of external cameras. A plane-induced homography transformation is used for consistently warping the video images, hence reducing the parallax between cameras and displays. An externally applied drive voltage is used for smoothly controlling the light transmittance of the LC shutters so as to allow an easy transition between the unaided and the camera-mediated view of the real scene. Our tests have proven the efficacy of the proposed solution under worst-case lighting conditions

    Augmented reality X-ray vision on optical see-through head mounted displays

    Get PDF
    Abstract. In this thesis, we present the development and evaluation of an augmented reality X-ray system on optical see-through head-mounted displays. Augmented reality X-ray vision allows users to see through solid surfaces such as walls and facades, by augmenting the real view with virtual images representing the hidden objects. Our system is developed based on the optical see-through mixed reality headset Microsoft Hololens. We have developed an X-ray cutout algorithm that uses the geometric data of the environment and enables seeing through surfaces. We have developed four different visualizations as well based on the algorithm. The first visualization renders simply the X-ray cutout without displaying any information about the occluding surface. The other three visualizations display features extracted from the occluder surface to help the user to get better depth perception of the virtual objects. We have used Sobel edge detection to extract the information. The three visualizations differ in the way to render the extracted features. A subjective experiment is conducted to test and evaluate the visualizations and to compare them with each other. The experiment consists of two parts; depth estimation task and a questionnaire. Both the experiment and its results are presented in the thesis

    Head Mounted Display by Integration of Phase-Conjugate Material

    Get PDF
    This invention has incorporated projective optics and phase conjugate material thus eliminating the requisite use of an external phase conjugate material to provide a see-through head mounted projective display. A key component of the invention is the use of optical imaging technology in combination with projective optics to make this revolutionary technology work. In previous head mounted projective displays the phase conjugate material had to be placed in the environment to display images, but in this invention one is not limited to the use of an external phase conjugate material but further extends its use to outdoor see-through augmented reality to produce images using the see-through head mounted projective display system. Furthermore, this invention extends the use of projective head mounted displays to clinical guided surgery, surgery medical, an outdoor augmented see-through virtual environment for military training and wearable computers
    • …
    corecore