25,169 research outputs found

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    CEG 7900-01: Emerging Networks

    Get PDF
    This is a graduate level course on emerging networking technologies. The course involves various components, including reading/lecture/presentation/discussion, paper review, and a project. It will provide an in-depth study on a number of focused areas: dense wavelength division multiplexing (DWDM) optical networks, ELASTIC optical networks, optical burst/packet switching networks, peer-to-peer networks, Internet of Things, Cloud Networking, Enterprise Networking and wireless mobile networks (including Ad-hoc wireless networks, cognitive radio networks). Various technical and research issues involved will be studied. These areas of emerging networking technologies will play central roles in future communication networks

    On the Energy Efficiency of MapReduce Shuffling Operations in Data Centers

    Get PDF
    This paper aims to quantitatively measure the impact of different data centers networking topologies on the performance and energy efficiency of shuffling operations in MapReduce. Mixed Integer Linear Programming (MILP) models are utilized to optimize the shuffling in several data center topologies with electronic, hybrid, and all-optical switching while maximizing the throughput and reducing the power consumption. The results indicate that the networking topology has a significant impact on the performance of MapReduce. They also indicate that with comparable performance, optical-based data centers can achieve an average of 54% reduction in the energy consumption when compared to electronic switching data centers

    Enabling transparent technologies for the development of highly granular flexible optical cross-connects

    Get PDF
    Flexible optical networking is identified today as the solution that offers smooth system upgradability towards Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of flexible spectrum allocation and networking, the development of a flexible switching node is required capable to adaptively add, drop and switch tributaries with variable bandwidth characteristics from/to ultra-high capacity wavelength channels at the lowest switching granularity. This paper presents the main concept and technology solutions envisioned by the EU funded project FOX-C, which targets the design, development and evaluation of the first functional system prototype of flexible add-drop and switching cross-connects. The key developments enable ultra-fine switching granularity at the optical subcarrier level, providing end-to-end routing of any tributary channel with flexible bandwidth down to 10Gb/s (or even lower) carried over wavelength superchannels, each with an aggregated capacity beyond 1Tb/s. © 2014 IEEE

    Bidirectional between Nodes in MATPLAN WDM Make a Big Impact in Efficiently

    Get PDF
    Optical network are being deployed on internet backbones paving the way for the next generation high speed Internet. Technology in the internet architecture brings in new challenges and performance issue. In this research we try to gain and overview of optical networks planning using MATPLAN WDM. Previously many of virtual topology has been done. For example our previous literature reviews about the MATLAB. This tool is help in networking field but MATLAB have their own weakness in designing new algorithm. We review the main research paper for optical networking with particular focus on all packet switching. Packet switching networking is a communications method in digital form that groups all transmitted data including of content, type, or structure called packets. Packet switching features delivery of variable-bit-rate data streams (sequences of packets) over a shared network. When traversing network adapters, switches, routers and other network nodes, packets are buffered and queued, resulting in variable delay and throughput depending on the traffic load in the network. We then try to create new topology using Matplan WDM to improve the network perfomance. In the end of this research we try to come out with an new topology that will solve this existing problem in the WDM

    AI-optimised tuneable sources for bandwidth-scalable, sub-nanosecond wavelength switching

    Get PDF
    Wavelength routed optical switching promises low power and latency networking for data centres, but requires a wideband wavelength tuneable source (WTS) capable of sub-nanosecond switching at every node. We propose a hybrid WTS that uses time-interleaved tuneable lasers, each gated by a semiconductor optical amplifier, where the performance of each device is optimised using artificial intelligence. Through simulation and experiment we demonstrate record wavelength switch times below 900 ps across 6.05 THz (122Ă—50 GHz) of continuously tuneable optical bandwidth. A method for further bandwidth scaling is evaluated and compared to alternative designs

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122×50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/λ intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Power consumption modeling in optical multilayer networks

    Get PDF
    The evaluation of and reduction in energy consumption of backbone telecommunication networks has been a popular subject of academic research for the last decade. A critical parameter in these studies is the power consumption of the individual network devices. It appears that across different studies, a wide range of power values for similar equipment is used. This is a result of the scattered and limited availability of power values for optical multilayer network equipment. We propose reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment. In addition we present a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible. For illustration and evaluation purpose, we apply both calculation approaches to a case study, which includes an optical bypass scenario. Our results show that the analytical model approximates the simulation result to over 90% or higher and that optical bypass potentially can save up to 50% of power over a non-bypass scenario
    • …
    corecore