869 research outputs found

    Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module

    Get PDF
    The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment.Electronic Components and Systems for European Leadership Joint Undertaking under grant agreement No. 826655 (Tempo).European Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, Switzerland, and the NetherlandsLodz University of Technology

    Deep Learning-Based Action Recognition

    Get PDF
    The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values ​​of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided

    End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

    Get PDF
    The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers, which hinders the natural human-machine communication. On the other hand, vision-based methods are not restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision gesture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using gesture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking. In this thesis, we leverage the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for self-parking system. We propose a 3DCNN gesture model architecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained gesture model on a custom-made data, which significantly improved the proposed system performance in real world environment. We adapt the architecture of the end-to-end solution to expand the state of the art video classifier from a single image as input (fed by monocular camera) to a multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to work on a limited resources embedded platform (Nvidia Jetson TX2) that is used by automakers for vehicle-based features, without sacrificing the accuracy robustness and real time functionality of the system

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe
    • …
    corecore